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THE Essay entitled 'Figure of the Earth,' Ly 
Sir G. B. Airy, in the Encyclopedia Metropolitans, 
is the only adequate treatise on Geodetic Surveys 
which has been published in the English language, 
and though now scarce, i t  will ever remain valuable 
both on m o u n t  of the historic research it contains, 
and the simple and lucid exposition of the me- 
chanical theory there given. Since the date of its 
publication however have appeared many important 
volumes,-scientific, descriptive, official,-such as 
Bessel's Gradmessung in Ostpreussen ; Colonel 
Everest's Account (1847) of his Great Arc; Struve's 
t ~vo  splendid volumes descriptive of the trigono- 
metrical chain connecting the Black Sea with the 
North Cape; the Account of the Triangulation of 
the British Isles; the Publications of the Inter- 
~~ational  Geodetic Association; recent volumes of 
the MBmorial du DBpdt GBn6ral de la Guerre; the 
Yearly Reports of the United States C o ~ t  and 
Geodetic Survey; the current volumes by General 
lbafiez, descriptive of the Spanish Triangulation, so 
remarkable for precision ; and laat, though not least, 
the five volumes recently published by General 
Walker, containing the detail$ of Indian Geodesy. 



vi PBEFACE. 

The subject has thus of late years become a very 
large one, and although the present work does not go 
much into details, it is hoped i t  will to some extent 
fill a blank in our scientific literature. The Astro- 
nomical aspect of the science is but lightly touched 
on-for in this matter books are not wanting-we 
have for in~tance the works of Briinnow and Chau- 
venet, the last of which contains almod everything 
that can be required. 

The once generally ;accepted ratio 298 : 299 of the 
earth's axes may be said to have disappeared finally ' 
on the publication (in 1858) of the investigation of 
the Figure of the Earth in the Account of the Tri- 1 

\ 
angulation of the British Isles, when i t  was replaced i 
by 293 : 294. At the same time that this ratio is, 
in the present volume, still further altered in the 
same direction, the formerly received value of the 
ratio as deduced from pendulum observations is now 
altered from something like 288 : 289 up to the same 
figures as now represent meridian measurements, 
namely, about 292 : 293. 

Thus, the disagreeable hiatus long supposed to 
exist between the result of actual meridian measure- 
ments and that deduced by Clairaut's Theorem from 
the actually observed variations of gravity on the 
surface of the earth, has now disappeared-thanks to 
the energetic labours of General Walker and his 
efficient staff of Officers. 
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CHAPTER I. 

GEODETICAL OPERATIONS. 

OF the many discoveries made in modern times by men of 
science-astronomers and travellers-none have ever tended 
to shake the doctrine held and taught by the philosophers of 
ancient times that the earth is spherical. That the surface of 
the sea is convex anyone may assure himself by simply observ- 
ing, say with a blescope from the top of a cliff near the sea, 
the appearance of a ship on or near the horizon, and then 
repeating a few momenta &r a t  the foot of the cliff the 
same observation on the same ship. Assuming the earth to 
be a sphere, a single observation of a more precise nature 
taken a t  the top of the cliff would give a value of the radius 
of the sphere. The observation required is the dip or angle 
of depression of the horizon : this, combined with one linear 
measure, namely, the height of the cliff, will su5ce for a 
rough approximation. This is an experiment that was made 
at  Mount Edgecombe more than two centuries ago, and may 
have possibly been tried in other places. The depression of 
the sea horizon at  the top of Ben Nevis is 1" 4' 48" ; this is . 
the mean of eight observations taken with special precautions 
for the very purpose of this experimental calculation; tho 
height of the hill is 4406 feet. Now let x be the radius of 
the earth, A the height of the hill, the tangent drawn from the 
observer's eye to the horizon subtends at  the centre of the 
earth an angle equal to the depression ; call this angle 8, then 
the length of the tangent is x tan 8. The square of this is 
equal to R (2x + h), or with sufficient accuracy for our pur- 
pose to 2 xA, hence x = 2 R  cota 8. But this formula is not 
pmtically true, as the path of the ray of light passing from 
the horizon to the eye of the observer is not a straight line, 

' 7 
/ 

B 



2 GEODETICAL OPERATIOSB. 

but a curved one. But the laws of terrestrial refraction hmve 
been carefully .studied, and we know that the value just 
written down for x should be multiplied by a certain con- 
stant : that is to say, the true equation is x = 1.6866 R cotZ 6. 
This numerical co-efficient, obtained from a vast number of 
observations, is to be considered as representing a phenomenon 
of variable and uncertain amount. On substituting the values 
of A and I3 we obtain for the radius expressed in miles x= 3960. 

I 

Now this is really very near the truth ; but, except for the 
precaution of having made the observations at  the proper 
hour of the day, the error might have been a hulldred miles : 
in fact the method, though it serves for getting the size of 
t,he earth in round numbers, is totally inadequate for scien- 
tific purposes. 

Amongst the early attempts to determine the radius of the 
earth, that of Snellins in Holland is remarkable as being the 
first in which the principle of measurement by triangulation 
was adopted. The account of this degree measure was pub- 
lished a t  Leyden in 16 1 7. Half a century later, in France, 
Picard conceived the happy idea of adapting a telescope with 
cross wires in its focus to his angle measuring instruments. I 
Armed with this p t l y  improved means of working, he 
executed a triangulation extending from Malvoisine, near 
Paris, to Amiens. From this arc, whose amplitude, deter- 
mined with a sector of 10 feet radius, was I0 22' 55", he 
deduced for the length of a degree 57060 toises. The 
accuracy of this result however was subsequently found to 
be due to a compensation of errors. 

One of the most important results of this measurement of 
Picard's was that i t  enabled Sir Isaac Newton to establish 
finally his doctrine of gravitation as published in the Prin- 
cipia (1687). I n  this work .Newton proved that the earth 
must be an oblate spheroid, and, moreover, that gravity must 
be less at  the equator than at  the poles. Of this last pro- 
position actual evidence bad been obtained (1672) by the 
French astronomer, Richer, in the Island of Cayenne in South 
America, where he had been sent to make astronomical observa- 
tions and to determine the length of the seconds' pendulum. 
Having observed that his clock there lost more than two 
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minutes a day as compared with its rate at Paris, he fitted up 
a simple pendulum to vibrate seconds, an& kept it under 
observation for ten months. On his return to Paris he found 
the length of this seconds' pendulum to be less than t.hat of 
the seconds' pendulum of Paris by If line. This very im- 
portant fact was fully confirmed shortly after by observations 
made at  other places by Dr. Halley, MM. TTarin and Des 
Hayes, and others. 

Picard's triangulation was extended, between 1684 and 17 18, 
by J. and D. Cassini, who carried it southwards as far as 

r Collioure, and northwards to Dunkirk, measuring a base a t  
either end. From the northern portion of the arc, which had 
an amplitude of 2" 12', they obtained 56960 toises as the 
length of a degree, while the southern portion, 6" 19' in 
extent, gave 57097 toises. The immediate inference drawn 
by Cassini from this measure was that the earth L a prolate 
spheroid. A subsequent measurement by Cassini de Thuri, 
and Lacaille, of this same arc, proved the foregoing results 
to have been erroneous, and that the degrees in fact increase, 
not decrease, in going northwards (Mbridienne v h i e  en 1744). 
Nevertheless the statement, on so great an authority as that 
of Cassini, that the earth is a prolate, not an oblate, spheroid, 
as maintained by Newton, Huygeng and others, found a t  the 
time many adherents, and on the question of the figure of 
the earth the scientific world was divided into hostile camps. 
The French, however, still maintained the lead in geodetical 
science, and the Academy of Sciences resolved to submit 
the matter to a crucial test by the measurement of an arc 
at  the equator and another a t  the polar circle. 

Accordingly, in May, 1735, the French Academicians, MM. 
Godin, Bouguer, and de la Condamine, proceeded to Peru, 
where, assisted by two Spanisli ofticers, after several years of 
laborious exertions, they succeeded in measuring an arc of 
3" 7', intersected by the equator. The second party consisted 
of Maupertuis, Clairaut, Camus, Le Monnier, the AbM 
Outhier, and Celsius, Professor of Astronomy at Upsal : these 
were to measure an arc of the meridian in Lapland. 

I t  is not our intention to write a history of the geodetical 
operations which have been carried out at  various times and 

B 2 



4 GEODETICAL OPEBATIONB. 

places ; we shall, however, give a somewhat detailed account 
of the measurement in Lapland, partly becauee it waa the one 
which first proved the earth to be an oblate spheroid, and also 
because it will a t  the same time serve the purpose of present- 
ing a general outline of the method of conducting a geodetic 
survey. 

The p r t y  of Maupertuis landed a t  the town of Tornea, 
which is at  the mouth of 
the river of the same name 
at  the northern extremity of 
the gulf of Bothnia, in the 
beginning of July, 1736. 
Having explored the river 
and found that its course 
was nearly North and South, 
and that there were high 
mountains on every side, 
they determined to estab- 
lish their stations on them 
heights. The pointe selected 
are shown in the accompany- 
ing diagram, together with 
the course of the river 
Tornea. Taking the church 
of the town of Tornea as 
the southern extremity of 
tho arc, the points were se- 
lected in the order-Niwa, 
N ;  Avasaxa, A ; Horrila- 
kero, H ; Kakarna, K ; Cui- 
taperi, C ; Pullingi, P ; Kit- 
tis, Q ; Nierni, N ; the north 
end of the base B ; and the 
south end of the base B. 
The signals they constructed 

0 

Ou on the hill tops-which had 
Fig. I. first to be cleared of timber 

-were hollow cones com- 
p o d  of many large trees stripped of their bark and thus 
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left whits so as to be visible a t  ten or twelve leagues' distance. 
They took the precaution to cut marks hpon the mks, or 
drive stakes into the ground, so as to indicate precisely the 
centres of their stations, which could thus be recovered in case 
of any accident to the signal. Accurate descriptions of the 
stations are given in Outhier's work, entitled, Jozrmal dtrn 
Voyage aa flora? en 1736-37. The arrangement of the 
stations in this triangulation, a heptagon in outline, having 
the base line a t  the middle of i t .  length, is certainly very 
good, and they regarded i t  on its completion with pardonable 
satisfaction, remarking that it looked as if the placing of the 
mountains had been a t  their disposal. The angles were 
measured with a quadrant of two feet radius fitted with a 
micrometer. With respect to the accuracy of this instrument 
i t  is stated that they verified i t  a great many times round the 
horizon and always found that it gave the sum of the angles 
very nearly equal to 360". I n  making the actual observa- 
tions for the angles of the triangles they took care to place 
the instrument so that its centre corresponded with the centre 
of the station. Each obeerver made his own observation of 
the angles and wrote them down apart, they then took the 
means of these observations for each angle : the actual read- 
ings are not given, but the mean is. The three angles of 
every triangle were always observed, and, by way of check, 
several supernumerary angles-aums or differences of the 
necessary angles at  any station-were also observed. 

The measurement of the angles was completed in sixty- 
three days, and on September the 9th they arrived at  Kittis 
and commenced to prepare the station for astronomical work. 
Two observatories were built ; in one was a small transit 
instrument, having a telescope fifteen inches in length, placed 
precisely over the centre of the station, and a clock made by 
Graham. The second observatory, close by, contained the ze- 
nith sector, also made by Graham ; the zenith sector mas thus 
not over the centre of the trigonometrical station, but measure- 
ments were taken whereby the observations could be reduced 
to the trigonometrical station. The clock was regulated every 
day by corresponding altitudes of the sun. The astronomical 
observations to be made included a determination of absolute 
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azimuth, and this was effected by observing with the small 
telescope the times of transit of the sun over the vertical of 
Niemi in the south-east in the forenoon and over the ver- 
tical of Pullingi in the south-west in the afternoon. These 
observations were made on eight days, between September 
30th and October 8th. The reduction of such observations 
requires the solution of a spherical triangle whose angular 
points correspond to the zenith, the pole, and the place of 
the sun ; then are given the colatitude, the sun's north polar 
distance, and the hour angle of the sun-that is, the angle 
at  the pole and the two adjacent sides are given, and from 
these is to be calculated the angle at  the zeuith, which is 
the required azimuth of the sun at  the noted time of obser- 
vation. 

The zenith sector consisted of a brass telescope nine feet 
in length, forming the radius of an arc of 5" 30: divided into 
spaces of 7' 30". The telescope, the centre to which the 
plumbline was hung, and the divided limb were all in one 
piece; the whole being suspended by two cylindrical pivots, 
which allowed i t  to swing like a pendulum in the plane of 
the meridian. One of these pivots ending in a very small 
cylinder at  the exact centre of the divided limb and in its 
plane formed the suspension axis of the plumbline. The 
divided limb had a sliding contact with a fixed arc below, 

l 

and this arc carried a micrometer against the pivot of which I 

the limb of the sector was kept pressed by the tension of a 
thread. This micrometer screw, by communicating to the 
telescope and limb a slow movement in the plane of the 
meridian, served to subdivide the spaces of 7'30". The in- 
strument was not used to determine absolute zenith distances, 
but differences of zenith distance only. The observations of 
8 Draconis, which passed close to the zenith, were commenced 
a t  Kittis on the 4th of October and concluded on the 10th. 
Leaving Kittis on the 23rd, they arrived at  Tornea on the 
28th, and commenced the observations of 8 Draconis on tlle 
1st of November, finishing on the 5th. The observations of 
the star a t  both stations were made by daylight without 
artificially illuminating the wires of the telescope. The 
difference of the zenith distances, corrected for aberration, 1 
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precession, and nutstion, gave the amplitude of the arc 
5?'26".93. 

It remained now to measure the base line, and this had 
been purposely deferred till the winter. The extremities of 
the base had been selected so that the line lay upon the 
surface of the river.Tornea, which, when h, presented a 
favourable surface for measurement. They had brought with 
them from France a standard toise (known afterwards as the 
Toise of tke ATmtk), which had been adjusted-together with 
a second toise, namely, that taken to Peru for the equatorial 
arc-to the true length a t  the temperature of 14" Reaumur. 
By means of this they constructed, in a room heated artifi- 

. cially to the temperature just mentioned, five wooden toises, 
the extremities of each rod being terminated in an iron stud, 
which they filed down until the precise length of the hise 
was attained. Having driven two stout nails into the walls 
of their rooms at a distance a trifle less than five toises apart 
the five toises, placed upon trestles, were ranged in horizontal 
line in mutual contact between these nails, which were then 
filed away until the five toises just fitted the space between 
them. Thus the distance between the prepared surfaces of 
the nails became a five toise standard. By means of this stan- 
dard they constructed for the actual measurement eight rods 
of fir, each five toises (about 32 feet) long, and terminated 
in metal studs for contact. Many experiments were made to 
determine the expansions of the rods by change of tempera- 
ture, but the result arrived a t  was that the amount was 
inappreciable. 

The measuring of the base was commenced on December 
21st, a very remarkable day, as Maupertuis observes, for com- 
mencing such an enterprise. At that season the sun but just 
showed himself above the horizon towards noon ; but the long 
twilight, the whiteness of the snow, and the meteors that 
continually blazed in the sky furnished light enough for four 
or five hours' work every day. Dividing themselves into two 
parties, each party took four rods, and two independent 
measurements of the line were thus made. This occupied 
seven days : each party measured every day the same number 
of toises, and the final difference between the two measurements 
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was four inches, on a distance of 8.9 miles. It is not stated 
how the rods were supported or levelled-probably they were 
merely laid in oontsct on the surface of the snow. 

It was now an easy &titer to get the length of the ter- 
redrial arc. Calculating the triangles as plane triangles they 
obtained the distance between the astronomical observatories 
at  Kittis and Tornea, and also the distance of Tornea from the 
meridian of Kittis. The length of this last enabled them to 
reduce the direct distance to the distance of the parallels of 
their terminal stations. The calculation of the distance was 
checked in various mays by the use of the supemumeray 
angles. The distance of parallels adopted was 55023.6 toies, 
which gave them, in connection with the observed amplitude, 
the length of one degree a t  the polar circle. 

The absolute latitude of Tornea, as obtained from observa- 
tions, made with two different quadrants on Polaris, wss 
65" 50' 50", a result which did not however pretend to much 
precision. 

The value they had obtained for the degree being much in 
excess of that a t  Paris showed decisively that the earth was 
an oblate and not a prolate spheroid. So great however 1 
was the difference 6f the two degrees that they resolved to 
submit the whole process to a most rigorous examination. It 
waa concluded that the base line could not possibly be in 
error, considering the two independent measures : nor could I 
the angles of the triangles, each of which had been observed so 
often and by so many persons, be conceived to be in error. 
They determined however to re-observe the astronomical 
amplitude, using another star, and also to observe the absolute 
azimuth a t  Tornea. 

The maker of the zenith =tor, Graham, had pointed out 
that the aro of 6" 30' was too mall  by 3".75 : this they de- 
termined to verify for themselves during the winter at  Tomea. 
The sector being placed in a horizontal position, two marks I 

were fixed on the ice, forming with the centre of the sector a 
right-angled triangle. The distances, ve y carefully measured, 
were such that the angle of the triangle at  the centre of the 
instrument wss precisely 5" 29' 60".0. The angle aa observed 
with the instrument (and here there is n curious misprint in 1 
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Maupertuis's book) was 5' 29' 52".7 : this was a satisfactory 
check on Graham's 3".75. The 15' spaces were all s u b  
quently measured with the micrometer, and also those two 
particular spaces of one degree each on which the amplitudes 
depend were compared. The etar seleded for the eecond de- 
termination of the amplitude waa a Draconiu-which psseed 
only one quarter of a degree south of Tornea. The observa- 
tions at  Tornea were made on March 1 ?thy 18th; lgth, and at  
Kittis on the 4th, 5th, 6th of April. The resulting amplitude 
ww 5 f  30"-42. 

The azimuth a t  Tornea waa obtained on May 24th by an 
observation of the horizontal angle between the setting sun, 
at a known moment of time, and the signal at  Niwa. Again 
the following morning-the sun was at  that time of the year 
only about four hours between setting and rising-the angle 
was observed, at  a given moment, between the rising sun and 
the signal of Kakama. Thus, by an easy calculation, the 
azimuths of these two stations were obtained. The result 
differed about 34" from the azimuth as calculated from the 
observations that had been made at  Kittis. 

This difference in the azimuth would not make any material 
difference in the calculated length of the arc; and of the 
difference of St'.49 between the two determinations of ampli- 
tudee, one second was due to the difference of the two degrees 
of the sector used respectively with a and with b Dmonis. 
Thus, the whole operations were concluded with the result 
that the length of the degree of the meridian which cuts the 
polar circle is 57437.9 toises. 

Notwithetanding the appearance of a considerable amount 
of accuracy in Mnupertuis's arc-measurement, yet there is a 
notable discordance between his terreatrinl and astronomical 
work, as if either his arc were 200 toisea too long, or his 
amplitude twelve seconds or so too small. I n  order to clear up 
this point, an expedition was organized and despatched from 
Stockholm in 1801, and the arc ww remeasured and extended 
in that and the two following years by Svanberg. The a o  
count of this measurement was' ~ublished in the work entitled 
hh~oailion rles Opkratiw faitee en Lapponie, 4c. par J. Svan- 
berg, Stockholm, 1 805. Svanberg succeeded fairly, though 
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not perfectly, in rehding the stations of Maupertuis, and 
verifies his terrestrial measurement : but taking for his own 
terminal points two new stations not in Maupertuis's arc, the 
amplitude obtained by the latter was not verified. The length 
of the degme which Svanberg obtained was about 220 toises 
less than that of Maupertuis. 

The valley in which Quito is situated is formed by the 
double chain of mountains into which the grand Cordillera of 
the Andes is there divided, and which extends in a nearly south 
direction to Cuenca, a distance of some three degrees. This 
was the ground selected by MM. Godin, Bouguer, and de la 
Condamine as the theatre of their operations. These moun- 
tains, which, from their excessive altitude, were a source of end- 
less fatigue and labour, offered however considerable facilities 
for the selection of trigonometlical stations-which, taken 
alternately on the one side of the valley and on the other, 
regulated the lengths of the sides and enabled the observers to 
form anexceptionally well-shaped triangles. 

The chain of triangles was terminated at either end by a 
measured base line. 

The northern base near Quito had a length of 7.6 miles: 
the altitude of the northern end mas 7850 feet above the level 

C ~ K ~ W U I  OW. of the sea. This indeed 
- is the lowest point in the 

work, seven of the signals 
being a t  elevations ex- 
ceeding 14,000 feet. The 
accompanying diagram 
shows the northern tri- 
anglesof the arc, extending 
as far south as Cotopaxi. 
The southern base was 
about 1000 feet above the 

I northern, and had a length 
of 6-4 miles : i t  occupied 
ten days (August, 1739) 

C O ~ O ~ X I  in the measurement, while 
rig. a. the northern, on rougher 

ground, took five-and-twenty (October, 1736). The measuring 
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rods used in the base measurement were twenty feet in length 
terminated a t  either end in copper plates for contact. Each 
measurement wss executed in duplicate: the whole party 
being divided into two companies, which measured the line in 
opposite directions. The rods were always laid horizontally, 
change of level being effected by a plummet suspended by a 
hair or f i ~ ~ e  thread of aloe. The rods were compared daily 
during the measurement with a toise marked on an iron bar 
and which was kept duly shaded in a tent. This working 
standard, so to call it., had been laid off from the standard 
toke which they had brought from Paris. De la Condamine 
thus refera to his standard, which, known as the Toise of 
Peru, subsequently became the legal standard of France: 
'Nous avions emport6 avec nons en 1735 une rhgle de fer 
poli de dix-sept lignes de largeur sur quatre lignes et demie 
d'dpaisseur. M. G d i n  aid6 d'un artiste habile avoit mis toute 
son attention B ajuster la longueur de cette ri2gle sur celle de la 
toise e'falon, qui a 6tA fix& en 1668 au pied de l'escalier du 
grand Chltelet de Paris. Je  previs que cet ancien Btalon, fait 
assez grossi8rementY et d'ailleurs expos6 aux chocs, aux injures 
de l'air, B la rouille, au contact de toutes les mesures qui y sont 
p&nt.&s, et B la malignit6 de tout mal-intentionn6, ne seroit 
guhre propre A verifier dans la suite la toise qui alloit servir 
la m m r e  de la terre, et devenir l'original auquel les autres 
devoient &tre compar6es. I1 me parut donc t r b  nCcessaire, en 
emportant une toise bien v6ri66e d'en laisser B Paris une 
autre de m&me matikre et de m&me forme B laquelle on pat 
avoir recours s'il arrivoit quelquYaccident 1 la n6tre pendant 
un si long voyage. J e  me chargeai d'office du soin d'en faire 
faire une toute pareille. Cette seconde toise fut construite par 
le m&me onvrier, et avec lea m&mes pr6cautions que la pre- 
mihre. Les deux toises furent compartks ensemble dans une 
de nos assembl&s, et l'une des deux rests en d6p8t B l1Acad6- 
mie: c'est la m&me qui a 6t6 depuis porte'e en Lapponie par 
M. de Maupertuis, et qui a 6tA employ& 31 toutes les op6ra- 
tions des Acadhmiciens envoy6s au cercle Polaire.' Both the 
b w s  were messured a t  a mean temperature very nearly 13' 
Resumur : ' C'est pr6ciskment celui que le thermomhtre de M. 
de h u m u r  marquoit Paris en 1735, lorsque notre toke 
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de fer fut Ctalon6e sur celle du Chdtelet par M. Godin.' 
(Mesure des trois premiers B e d  du Mhdien par M. Ile la 
Conduntine, Paris, 175 1, pp. 75, 85.) Tbe difference between 
the two measures of the base in either a w  is said not to have 
exceeded three inches. 

I 

The quadrants, of from two to three feet radius, with which 
the angles of the triangles were observed were very faulty, 
and much time wse spent in determining their errors of 
division and eccentricity. M. de la Condamine obtained a 
system of corrections for every degree of his instn~ment, and 
in only four of the thirty-three triangles as observed by him 
does the error of the sum of the observed angles amount to 
lo"; that is, after being corrected for instrumental errors. 
All the three angles of every triangle were observed, and each 
angle by more than one observer. 

The azimuthal direction of the chain of triangles was de- 
termined fiom some twenty observations of the sun a t  various 
stations along the chain. 

The determination of the latitudes cost them some years of 
labour. Their sectors of twelve and eight feet radius were 
found very defective, and they were virtually reconstructed on 
the spot. A vast number of observations were rejected, and 
the amplitude mas finally adopted from simultaneous obaerva- 
tions of E Orionis made by De la Condamine at  Tarqui (the 
southern terminus) and Bouguer at  Cotchesqui ; the observa- 
tions, extending from November 29th 1742, to January 15th 
1 7 4 3. By the simultaneous arrangement of the observations 
any unknown changes of place in the star were eliminated in 
the result. 

The zenith sector mas used in a different manner from that 
of Maupertuis. I n  his case the plumb-line indicated the 
direction of the telescope, or the star, a t  the one station and 
a t  the other; there was no attempt to ascertain the absolute 
zenith distance. In  the observations in Peru the zenith 
sector was reversed in azimuth several times at  each station, 
whereby the unknown reading of the zenith point was 
eliminated, and the double zenith distance of the star 
measured. The amplitude of the arc, aa derived from c Ori- 
onis, they found to be 3' 7' l''m0. This was checked by 1 
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observations on a Aquarii and 8 Aquilre, which however they 
did not we. 

From this and the length of the arc, namely, 176945 toises 
(at the level of their lowest point, and taking the mean of 
the two lengths calculated by Bouguer and De la Condamine), 
the length of the degree was ascertained to be 56753 toises. 

Bouguer published his history of the expedition in a work 
entitled, Zu +re dc la Tme, par M. Bonguer, Paris, 1 749. 
The calculations of this arc were revieed by Von Zach (Mm. 
Corresp. xxvi. p. 52), who finds the amplitude to be 3" 7' 3".79 
and the terrestrial arc 176874 toises, reduced to the level of 
the sea. Delambre, by a revision of the reduction of the ob- 
servation~ made with the zenith sector, obtained for the lati- 
tudes of Tarqui 3" 4' 3 1"-9 S and of Cotcheaqui 0" 2' 3 1''.22 N, 
making the amplitude 3" 7' 3".12. 

I n  1783, in consequence of a repreaentation from Cassini de 
Thuri to the Royal Society of London on the advantages 
that would sccrne to science from the geodetic connection of 
Paris and Greenwich, General Roy was with the King's ap- 
proval appointed by the Royal Society to conduct the opera- 
tions on the part of England,-Count Csesini, Mechain, and 
Legendre being appointed on the French side. The details of 
this triangulation, ae far as concerns the English observers, are 
fully given in the Account of the Trigonometricat Survey of 
Englatzd atad Wales, Vol. I. The French observations are 
recorded in the work entit.led, Expo86 des Ophatiotla faites en 
Prance en 1787 pow la jonction a h  Ob~ervahirea de Paris et 
~reenwki : par MM. Cassini, Mechain, et Legendre. 

A vast increase of precision was now introduced into 
geodesy. On the part of the French, the repeating circle was 
for the first time used ; and in England Ramsden's theodolite 
of three feet diameter was constructed and used for measuring 
the angles of the triangles and the azimuth by observations of 
the Pole Star. The lower part of this instrument consists of 
the feet or levelling screws, the long steel vertical axis, and 
the micrometer microscopes-originally three in number- 
whereby the graduated circle is read, these being all rigidly 
connected. The next part above consists of the horizontal 
circle, the hollow vertical axis fitting on to the steel axis 
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before mentioned, and the transverse arms for carrying the 
telescope, all strongly united. The circle has a diameter of 
thirty-six inches, i t  is divided by dots into spaces of 15', 
which by the microscopes are divided into single seconds. 
The vertical axis is about two feet in height above the circle. 
The telescope has a focal length of thirty-six inches and a 
transverse axis of two feet in length, terminated in cylindrical 
pivots, about which, when supported above the axis of the 
theodolite, i t  is free to move in a vertical plane. - 

A secoild instrument almost identical in size and construc- 
tion was shortly afterwards added. Both of them have done 
much service on the Ordnance Survey, having been used at  
most of the principal stations. Notwithstanding all the 
travelling and usage they have been subjected to for so mauy 
years, they are both now, with perhaps the exception of some 
very trifling repairs, as good as when they came from Rams- 
den's workshop. Fortunately no accident has ever happened 
to either of them, which is remarkable when we consider how 
many mountains they have ascended. 

The measurement of a base on Hounslom Heath was the 
first step in the trigonornetrial survey of Great Britain. 
The ground was selected from the extraordinary evenness of 
its surface and its great extent without any local obstructions 
to the measurement. 

The bases which had been measured previously to that time 
in other countries had generally been effected with deal rods. 
Accordingly, three such rods, twenty feet each in length 
and of the finest material, were obtained; they were ter- 
minated each in bell-metal tips, by the contact of which the 
measure was to be made; but i t  does not appear that they 
were oiled or varnished. I n  the course of the work i t  became 
obvious that the rods were affected to such an extent by the 
variations of humidity in the atmosphere that the measure- 
ment was considered a failure. The base was then measured 
with glass tubes of twenty feet in length, of which the 
expansions were determined by actual experiment. The tem- 
perature of each tube was obtained during the measurement 
from the readings of two thermometers in contact with it. 

The length obtained from the glass tubes was 27404.0 feet 
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when reduced to the level of the sea and to the temperature 
of 62' Faht. 

With respect to the reduction of the base to the level of 
the sea, what is meant is this : when we speak of the earth 
being a sphere or a spheroid me do not mean thereby that 
the external visible surface of the earth is such. What is 
intended is that tho surface of the sea, produced in imagi- 
nation so as to percolate the continents, is a regular surface 
of revolution. As trigonometrical operations are necessarily 

1 
conducted on the irregular surface of the ground, it is usual 
to reduce the observations or measurements to what would 
have been obtained at corresponding points on the surface of 
the sea. If S be any actual trigono- 
metrical station, 8 its projection on A 

the surface of the sea, so that the 
line S8=h is a normal to the water 
surface at 8, then 8 is the point dealt 
with in all the calculations of tri- 
angulation. 

In this light a base line should be 
measured along the level of the sea 
as ab, but practically the section of 
a base line will be always some un- 
even line as A B. Generally, i t  will 
be measured in a succession of small 
horizontal portions as indicated in the 

~ i g .  3. 
diagram : we may suppose each hori- 
zontal portion to be a measuring rod. If I be the length of 
a rod and r  the radius of the earth, then the length of the 
projection of I on ab by lines drawn to the centre of the earth 
is clearly -- Ir  - I-ZL 

r+h r  ' 
summing this from one end of the baee to the other, we see 
that if i be the number of measuring rods in the base and 
il=L, then the length of the base as reduced to the level of 
the sea ab is 

For the reduction of the base i t  is necessary t.hen that the 
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height of every portion of the base le known, in order to get 
the mean height of the line. 

To return to the measurement of the base a t  Hounslow. 
It was considered that the length obtained by the glase tubes 
ought to be verified, and it was decided to remeasure the line 
with a steel chain. For this purpose two chains of a hundred 
feet long were prepared by Ramsden. Each chain consisted 
of forty linke, half an inch square in section, the handles 
were of braas, perfectly flat on the under side; a transverse 
line on each handle indicated the length of the chain. One 
chain was used for measuring; the other wse reserved as a 
standard. 

A t  every hundred feet of the base was driven a post carry- 
ing on its upper surface a graduated slider, moveable in the 
direction of the base by a slow-motion screw; this post served 
to indicate, by a division on the scale or slider, the end of one 
chain and the initial point of the next. The chain, stretched 
by a weight of twenty-eight pounds, was laid out in a sucoession 
of five deal coffers carried on trestles, so that the handles of the 
chain rested upon two of the posts, or on the divided scales 
attached thereto. The final result exoeeded by only some two 
inches that obtained from the g h  tubes. 

The instrument introduced in these operations by the French 
for the measurement, not only of terrestrial angles, but for 
astronomical work, was one constructed on a principle pointed 
out by Tobias Mayer, professor in the University of Gottingen, 
in Comme?llarii Societatie Regiue ficiendiarurn, Gotting. 1 752. 
The repeating circle, used then and for many years after to 
the exclusion of every other kind of instrument for geodetical 
purposes in France, soon attained an immense reputation, and 
was adopted in nearly every country of continental Europe, 
where precise results were desired. I t  was, however, never 
used in England. The aim of the principle of repetition was 
to eliminate errors of division, a class of errors which was 
certainly large a t  that time. But, as the art of dividing 
circles attained gradually to higher perfection, so the value of 
the repeating circle dimillished. Besides it was found by pretty 
general experience that the instrument was liable to constant 
error, of which the origin was not explained satlfactorily. 
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The repeating circle haa a tripod stand, with the usual 
levelling foot-screws, and a long vertical axis, a t  the base 
of which is a small azimuthal circle, which, however, is only 
a subordinate part of the instrument. A t  its upper extremity 
this vertical axis of rotation carrie-n a kind of fork--a 
short horizontal axis, to which are united on opposite sides 
of it the repeating circle and its counterpoise; the axis of 
rotation of the circle iteelf passing from the one to the other. 
By rotation round the horizontal axis the circle can be set 
a t  any inclination between the limits of horizontality and 
verticality; this, combined with azimuthal rotation round 
the long vertical axis, allows the circle to be brought into 
any plane whatever. The circle, which is divided on one 
surface only, is fitted with two telescopes; the upper telescope 
carries with i t  four verniers for reading the angles; the lower 
telescope carries no verniers, and is mounted eccentrically; 
the optical axis of each telescope is parallel to the plane of 
the circle. Moreover each telescope rotates round an axis 
coincident with that of the circle, and each may be inde- 
pendently clamped to the circle. 

The process of measuring an angle between two terrestrial 
objects is this ; let R and L designate respectively the right 
and left objecta. The first thing is to bring the plane of the . 
circle to pass through R and L Suppose, to fix the ideas, 
that the divisions of the circle read from left to right (this 
was the French practice and is contrary to ours). (1) Having 
set and clamped the upper telescope at  zero, the circle 
is turned in its own plane until R is bisected by the 
upper telescope, then the circle is clamped. (2) The circle 
and upper telescope remaining b e d ,  the lower telescope is 
brought to bisect L and then clamped to the circle; this is 
the first part of the operation. (3) Without deranging the 
telescopes the circle is unclamped and rotated in its own plane 
until the lower telescope comes to R and bisects i t  ; then the 
circle is clamped. Thus the upper telescope has been moved 
away from R in the opposite direction to L, and by an amount 
equal to the angle to be measured. (4) The upper telescope 
is now unclamped and directed to L where it is clamped. 
If now the verniers be read i t  is clear that they indicate 

C 
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double the angle between R and L. This compound opera- 
tion is repeated as many times ae may be thought necessary, 
starting always from the point where the upper telescope haa 
arrived a t  the close of the preceding double measure. It is 
hardly necessary to remark that the clamps are accompanied 
by the ordinary tangent screws. 

It is only necessary to read the circle a t  the commencement 
and a t  the end of the repetitions, keeping account of the 
number of total circumferences passed over. Then the result- 
ing angle, which may be many thousands of degrees, is 
divided 'by the number of repetitions ; thus the error of 
reading and of graduation is divided by so large a number 
that i t  is practically eliminated. 

There are, however, other sources of error a t  work; the 
whole apparatus is not rigid as it is in theory supposed to 
be, and the play of the several axes doubtless affects the work 
with some constant error. Moreover it is a principle in 
observing generally, that to repeat the eame observation over 
and over, under precisely the same circumstances, is a mere 
waste of time, the eye itself seems to take up under such 
circumstances a fixed habit of regarding the object observed, 
and that with an error which ie for the time uniform. I n  
some repeating circles a tendency has been found in the 
observed angle to continually increase or decrease aa the 
number of repetitions was increased. 

W. Struve, in his account of his great arc in Ruasia, 
observes that if in measuring an angle the repetition be made 
first in the ordinary direction, and then again by reversing 
the direction of rotation of the circle, the two results differ 
s~.stematically. Accordingly it became the practice to combine 
in measuring an angle rotations in both directions. Neverthe- 
Iew there mas no certainty that even then the error was elimi- 
nated, and the method of repetition was soon abandoned. 

I n  March, 1791, the Constituent Assembly of France 
received and sanctioned a project of certain distinguished 
members of the Academy of Sciences, Laplace and Lagrange 
being of the number, to the effect that a ten-millionth part 
of the earth's meridian quadrant should thereafter be adopted 
as the national standard of length, to be called the metre. 
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The length was to be determined by the immediate measure 
of an arc of the meridian from Dunkirk to Barcelona, com- 
prehending 9" 40' of latitude, of which 6" were to the north 
of the mean latitude of 45". This measurement mas to iu- 
clude the determination of the difference of 1atit.ude of Dun- 
kirk and Barcelona, and other astronomical observations that 
might appear necessary; also the verification by new observa- 
tions of the angles of the triangles which had been previously 
employed ; and to extend them to Barcelona. The length of 
the seconds' pendulum in latitude 45' was also to be deter- 
mined, and some other matters. 

Delambre was appointed to the northern portion of the arc, 
Mechain to the southern ; each mas supplied with two repeat- 
ing circles made by Lenoir, and the work was commenced in 
June, 1792. The angles of all the triangles from Dunkirk to 
Barcelona were observed with repeating circles, and absolute 
azimuths were determined a t  Watten (a station adjacent to 
Dunkirk), Paris, Boorges, Carcassonne, and Montjouy. The 
sun was used in these determinations, in the evenings and 
mornings; the angle between the sun and selected trigono- 
metrical stations being observed a t  recorded moments of 
time. The observations are numerous; at  Paris there are 
as many as 396, yet between that station and Bourges (120 
miles south), where there were 180 observations, the discrep- 
ancy between the observed azimuths is as much as 3gN.4. 
Delambre could not explain the discrepancies between his 
observed azimuths, but consoled himself with the reflection 
that a somewhat large error of azimuth did not materially 
influence the result he obtained for the distance between the 
parallels of Dunkirk and Barcelona. 

The latitudes were determined by zenith distances, prin- 
cipally of a and U r n  Minoris, a t  Dunkirk, Paris, Evaux, 
Carcassonne, Barcelona, and Montjony. 

The length of the terrestrial arc was determined from two 
measured lines, one a t  Melun, near Paris, the other at  Car- 
arssonne--each about seven and a quarter miles long. The 
meswring rods were four in number, each composed of two 
etrips of metal in contact, forming a metallic thermometer, 
camed on a h u t  beam of mood. The lower strip is of 

C 2 
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platinum, two toises in length, half an inch in width, and a 
twelfth of an inch in thickness. Lying immediately on this is 
a strip of copper shorter than the platinum by some six inches. 
The copper strip is fixed to the platinum at  one extremity by 
screws, but at  the other end, and over its whole length, i t  is 
free to move as its relative expansion requires along the plati- 

' num strip. A graduated scale at  the free end of the copper, and 
a corresponding vernier on the platinum, indicate the varying 
relative lengths of the copper, whence it is possible to infer the 
temperature and the length of the platinum strip. At the 
free end of the latter, where i t  is not covered by the copper, 
there is a small slider fitted to move longitudinally in a groove, 
so forming a prolongation to the length of the platinum; 
the object of this slider, which is graduated and read by help 
of a vernier, is to measure the interval between the extremity 
of its own platinum strip and that of the next following in 
the measurement. Both the verniers mentioned are read by 
microscopes. 

I n  the measurement each rod waa supported on two iron 
tripods fitted with levelling screws, and the inclination of the 
rod was obtained by means of a graduated vertical arc of lo0, 
~ t h  two feet radius, furnished with a level and applied in 
reversed positions. The whole apparatus was constructed by 
M. de Borda. 

The rod marked No. 1 was compared by Borda with the 
Toise of Peru, not directly, but by means of two toises which 
had been frequently compared with that standard; so that 
all the lengths in the French arc are expressed in terms of 
the Toise of Peru at  the temperature of 16"-25 Cent.= 13" 
Reaumur. The rod No. 1 was not after Delambre's time used 
in measuring baeeg but was retained by the Bureau des 
Longitudes as a standard of reference. 

The Commission appointed to examine officially the work 
of DeLLmbre and Mechain, and to deduce the length of the 
metre, after having verified all the calculations, determined 
the length of the meridian quadrant from the data of this new 
French arc combined with the arc in Peru. For the French 
arc they had obtained a length of 561584.7 as comprised 
between the parallels of Dunkirk and Montjouy, with an 
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amplitude of 9" 40' 25" ; the latitude of the middle of the 
arc being 46" 11' 58". For the arc of Peru they took (accord- 
ing to Delambre's statement) Bougner's figures, namely, 
176940-67, that is 176873 as the length reduced to the 
level of the sea, with an amplitude of 3" 7' I", the latitude of 
the middle being lo 3 1' 0''. 

It may be worth while here to go over, in an approximate 
manner, this historically interestsing calculation. The latitude 
of a place on the surface of the earth, supposed an ellipsoid 
of revolution, is the angle the normal to the surface there 
makes with the plane of the equator. Let 2 A and 2 B be the 
sum and difference of the semiaxes of the elliptic meridian, 
which we suppose to be so nearly a circle that the square of 
the fraction B :A is to be neglected, then i t  is easy to shorn 
that the radius of curvature at  a point whose latitude is $J is 

R = A-3Bcos2$, 
Multiply this by d+ and integrate from 0 to 4 x ; this gives for 
the length of the quadrant Q= 4 x A. If we know the radii 
of curvature a t  two points whose latitudes are $J and $',-then 
we have two equations such as the above, and eliminating B 
between them, the result is-putt ing 22, 2A for the sum and 
difference of the radii, and u, b for the sum and difference of 
the mean latitudes, 

A = Z+Acotucot8. 

If we divide the length of a short arc by its amplitude we get 
the radius of curvature a t  its centre : thus, from the numbere 
we have just given, the radii of curvature a t  the centres of 
the French and Peruvian arcs are respectively 3266978 and 
3251285, thus 2 = 3259131 and A = 7846, 

1 log 7846 . . . 3.89465, 
log C&(U = 47'43') ... 9.95875, 
log cot (8 = 44' 41') . . . 0.00480, 

log 7214 ... 3.85820. 

Thus A = 3266345 : this multiplied by Ax and divided by 
10,000,000 gives the length of the metre = 4130766 in parts 
of the toise of Peru. The toise is six French feet of twelve 
inches, and an inch is 12 (lignes,' thus the toise is 864', and 
the metre consequently is 443l.298. 
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This is not the precise result attained by the Commission, 
as we have only made an approximate calculation ; they ob- 
tained 443l.296, which is the authoritative length of "I'he 
Metre.' 

The history of these matters is given in full detail in the 
volumes entitled Base du y8t;rne m'trique dicimale, by De- 
lambre. 

The final results for the French arc may be summed up 
as in this table : 

This arc was subsequently extended by MM. Biot and Arago 
along the Spanish coast and terminated in the islands of Ivica 

l 
and Formentera. The account of this undertaking will be 
found in the volume entitled Becueil d'observationa gebde'8ipes 
aetrmwmiques etphyeipes ..., par MM. Biot et Arago, Paris, 1 

~ 
1821. As many as 3990 observations were made (1807, 1808) 
on a and @ Urs. Min. for the latitude of Formentera ; but in I 

consequence of doubts that had arisen as to the value of obser- 
vations for latitude with the repeating circle when made on 
one side of the zenith only, the latitude was re-observed by 
Biot in 1825, taking stars north and south of the zenith. 
The north stars gave a latitude differing 7" from that given 
by the south stars in 880 observations, while in 180 observa- 
tions the difference amounted to 12". The final result for the 
latitude of Formentera was 38' 39' 53".17. The distance of 
the parallels of Formentera and Montjouy as recomputed by I 

Bessel (Aalron. A5zchricAt. No. 438, p. 11 4) is 153673.6 toises. 
The publication in 1838 of the work entitled Gradmessung in 

Oetpreussen und ihre Perbindung ..., by F. W. Bessel, marks 
an era in the science of geodesy; the look itself, equally 
with the work of which i t  treats, being a model of precision. I 

STATIOSS. 

. . . . . . . . .  Dunkirk 
Pantheon (Park) ...... 
Evaux . . . . . . . . . . . .  
Carc~ssonne . . . . . . . . .  
h b n a  . . . . . . . . .  
Montjouy . . . . . . . . .  

o I II . 51 8.85 

48 50 49.37 .. 46 42.54 
43 1. 54.30 
41 2. 47.90 
41 11 44.96 

Tokes 

114944.8 
15aa93" 
168846.7 

104555.9 
9434 
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The geodetical operation described is the measurement by 
Bessel himself and Major (now General) Baeyer of an oblique 
chain of triangles between Trunz and Memel, destined to 
connect the extensive triangulations of France, Hanover, 
Denmark, Prussig Bavaria, and other countries to the west 
with that of Russia on the ea t .  The annexed diagram shows 
the triangles, omitting the base Line and its connection with 
the side Galtgarben-Konigsberg. The side Trunz-Wilden- 
hof is common to the Prussian triangulation : Memel-Lepaizi 
to the Russian. Whilst fulfilling the purpose of connecting 

m s  
Fig. 4. 

the triangulations named, besides giving the means of com- 
paring the lengths and azimuths in the two triangulations, 
the chain of Bessel and Baeyer was in itself a degree measure, 
oblique indeed, but for that reason all the more valuable ; for 
by observing the latitude and direction of the meridian a t  the 
extreme pointa both semiaxes of the terrestrial spheroid are 
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obtained. For the arc is equivalent to an arc of meridian and 
an arc perpendicular to the meridian combined, so that the 
curvature of the surface in the principal sections is known, 
and thence the values of the semiaxes follow. 

The base line, only 935 toises in length, was measured with 
an apparatus very similar to that of Borda. The meamring 
rods, two toises in length, were four in number, each com- 
posed of a strip of iron and one of zinc, forming a thermo- 
metric combination. The very small interval forming the 
mctallic thermometer was measured by means of a graduated 
glass wedge, as was also the interval left between two rods in 
the measuring of the base. The relative lengths of the rods 
and the values of the thermometric indications of each, were 
obtained from inter-comparisons, first with all the bars a t  a 
summer temperature, again with all a t  a winter temperature, 
and again in pairs a t  temperatures differing 20" h u m u r .  
The absolute lengths were obtained by comparisons of one of 
the rods with Be88d.s Toire,-which had been constructed by 
Fortin as a copy of the Toise of Peru. 

The extremities of the base were thus marked; a large block 
of granite was imbedded in a mass of brickwork below the 
surface of the ground ; a hole pierced vertically in the granite 
was fitted with a cylinder of bras, the axis of which, shown by 
a fine cross engraved on the upper surface, marked the end of 
the base. The brickwork was then carried upwards above the 
suiwface to a height suficiont to form a support to the theodo- 
lite, and capped with a block of stone, into which was let 
another vertical cylinder having its axis in the same line with 
that of the first cylinder. In  placing the theodolite over 
this mark precautions were taken preventing an error of se 
much as a hair-breadth. The centre marks and centering 
of the instrument over all the stations were matters of most 
careful consideration. 

The signals for observing were of two h d s  ; the one con- 
sisted of a hemisphere of copper, silvered and polished, placed 
with its axis vertical and passing through the centre mark of the 
station. In sunehine a bright point or image of the sun is thus 
shown, forming a good object for observing; the position how- 
ever of the bright epot varies with the time of day and requires 
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the calculation of a correction. The second form of signal was 
a board t,wo feet square, painted white, with a black stripe 
down its centre, mounted with its plane vertical, so as to be 
capable of rotation round an axis which coincided with the 
centre of the black stripe and also with the vertical line 
through the centre mark of the station. 

Tmo theodolites of 15 inchea and 12 inches diameter were 
used for the horizontal angles. The manner of observing was 
this :-the theodolite being adjusted and levelled and the 
divided circle clamped, the telescope is turned to the first 
object, and the verniers of the horizontal circle read ; the 
same is repeated in succession on each of the other points to 
be observed. On the termination of this first series, a repeti- 
tion of the same in an inverted order immediately follows; 
the mean L taken of the pair of readings so obtained for each 
point. Then, changing the position of the zero of the circle 
by about 15", a third and fourth series are taken iu the same 
manner; again a shift of the zero 15' and a fifth and sixth 
series, and so on. 

The smaller instrument was a repeating theodolite, and s 
few observations were made on that principle. The mean 
error of a single observation of a bearing with the larger 
theodolite was + lW.3. 

The determinations of time, of latitude, and in part of azi- 
muth, were effected with a transit instrument of 12 inch 
aperture and 2 1 inches focal 
length. The observations 
for time and azimuth were 
combined by erecting marks 
in or near the meridian : a t  
Trunz one M just north, a 

E 
second A, 2" 20' to the west 
of north, and a third B aa 
much to the east. This 
angle being a little less 
than the greatest azimuth 
of the pole star, the verti- ~ i g .  5. 
cal plane passing through 
either mark cuts the path of the star in two points, so that 
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if ih lRait iastnrment be so placed that its centre thread 
bisects one of the marks, then two transits of the pole star 
can be observed, one just before, the other just after the time 
of its greatest azimuth. These, combined with transits of 
quick-moving stars near the ~enith,  determine both azimuth 
and time. ~ 

Determinations of azimuth were also made with the larger 
theodolite by observing the angle between a terrestrial mark 
and the pole star, the instant of observing the star being 
noted. A single determination of the angle involved the fol- 
lowing operations :-the reading of the transverse level of the 
theodolite in reversed positions, the observation of the mark, 
the star ; the star, the mark, the level again. Before the next I 
following measure of the angle, the telescope was reversed so 
as to change the sign of the collimation error. 

I n  the preceding diagram .Bf Z C is the meridian, V Z E  the 
prime vertical, P C H  the diurnal path of a star whose de- 
clination is less than the latitude of the place of observation ; 
such a star crosses the prime vertical first on the east side of 
the zenith and again on the west. Now if, by means of a 
transit instrument, adjusted so that its collimation line de- 
scribes the plane WZE, we observe the times of the eastern 
and western transits, half the interval gives the angle Z P K, 
whence, knowing P K, the star's North Polar distance, one can 
easily calculate P Z the required colatitude. Or if the precise 
time of one transit only be known, that is sufficient for a 
determination. By this method the latitudes of Trunz, 
Memel, and Konigsberg mere determined ; the observations 
extending over ten days a t  T m  and thirteen at  Memel. 
The reduction of all these astronomical observations-a some- 
what serious calculation-was effected by means of formulse 
remarkable for their elegance. No loophole was leR for any 
residual error to arise from defect of calculation. 

The reduction of the horizontal angles and calculation of 
the triangulation were effected by the method of least squares 
-a very laborious process--culminating in the solution of 
31 equations containing 31 unknown quantities. If in effect- 
ing a triangulation one observed only just so many angles as 
were absolutely necesssry to fix all the points, there would be 
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no difficulty in calculating tfie work; only one result conla 
be arrived at. But i t  is the invariable custom to observe 
more angles than are absolutely needed, and it is these super- 
numerary angles which give rise to complex calculations. 
Until the time of Gauss and Bessel computers had simply 
used their judgment as they best could as to how to employ 
and utilize the supernumerary angles; the principle of least 
squares showed that a system of corrections ought to be 
applied, one to each observed bearing or angle, such that 
subject to the condition of harmonizing the whole work, the 
sum of their squares should be an absolute minimum. The 
first grand development of this principle is contained in this 
work of Bessel's. 

In 1823 Colonel Everest was appointed to succeed Colonel 
Lambton in the direction of the Great Tripnometrical Survey 
of India. The latter had 'measured an arc of meridian, ten 
degrees in length, from Punnoe, near Cape Comorin, to Damar- 
gida, in  latitude 18" 3', and the continuation of the arc north- 
ward fell to Colonel Everest. The instruments which had 
been used by Colonel Lambton were two steel chains, a zenith 
sector by Ramsden, a theodolite of 18 inches, and another of 
36 inches diameter. This last in 1808 met with a serious 
accident while being raised to the top of a pagoda, having, 
through the mapping of a ropeJ been dashed against the wall. 
The distorted circle was by the help of native artificers brought 
back to something like its original form, and with this instru- 
ment Colonel Everest measured--certainly with much skill- 
his angles. The account of the measurement of the arc be- 
tween Damargida and Kalianpur is to be found in a volume by 
Colonel Everest, entitled An Account of tAe Meamrement of an 
Arc Of the M~icEian hetween tAe parallels of 18" 3' and 24" 7' . . . 
(London, 1830). The length of the arc depended on three base 
linesJ one at  either extremity, and the third at  Takal Khera, 
near the centre. The astronomical station Takal Khera divides 
the arc into two very nearly equal parts, the amplitudes of the 
northern and southern sections being 

a'= 3" 1' 19"-91, 
a = 3' 2' 3tjN-86. 

On comparing these with the corresponding terrestrial lengths 
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(in feet) i t  appears that if p'p be the radii of curvature of the 
meridian at  the middle points of the two sections 

p'= 20803380, in latitude +'= 22" 36' 32"; 
p = 2081 3200, in latitude + = 19' 34' 34". 

Here we have an anomaly that haa been met with in ot,her 
places, namely, that the curvature of the meridian apparently 
increases towards the north. Such an effect might result from 
an error of latitude of the centre point of the arc, and Colonel 
Everest looked for the possible source of the error in the ab 
traction of a mass of mountains or table-land to the north of 
Takal Khera, called the Mahadeo P'har. This table-land ap- 
proaches in form to a rectangle of length A B= 120 miles, 

breadth B B= 60 miles, Takal Khera 
A T being distant 20 miles from and mb opposite The mean ts height the middle of the point range of above CB. 

T is about 1600 feet or 0.3 mile. 
Colonel Everest, to obtain the de- 

C I I flection of the direction of gravity at  
T! T, caused by the attraction of t h i ~  

Fig. 6. mass, investigates a general expression 
for the attraction of a parallelepiped 

at  any external point. We may verify his result by a simple 
formula which will be found in chapter XI1 of this volume. 
The deflection a t  T depends on the angles O 6', aa marked in 
the diagram, and is expressed by the formula 

b = 12".44 gh log, (tsn 6' cot f 0), 

where g is the ratio of the density of the hills to the mean 
density of the earth @=o-6) and h the height of the plateau 
in miles ( A  = 0.3). Thus, using common logarithms, 

b = 10".31 log (tan 4 #cot f 0). 

Now 8'= 63" 8' and 8 = 18" 26', and we have 
log tan 26" 34' ... 9.6990, 
logcot 9'13' ... 0.7898, 

log tan f 6' cot 4 8 . . . 0.4888, 

which multiplied by 10".3 gives 5"-0 as the required error of 
latitude. Colonel Everest then investigates the alteration 
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required to  the latitude of Takal Khera in order that the two 
sections of the arc may conform to the (then) received value 
of the earth's ellipticity, namely, .I,. We may verify his 
result by  an approximate calculation. A correction x to the 
latitude of T a h l  Khera makes the amplitudes a'-x and a+%, 
and the radii of curvature become 

which are to be equated respectively to 

A-3Bcos 2+'; A-3Bcos2@, 

A and B being the half sum and half difference of the semi- 
axes of the earth, and A=600 B. Then eliminating A, we 
have with close approximation 

p-p' ... 3.99300, sin(+'-$) . .. 8.72359, 
p+p' ... 7.61927, h(#'+$) ... 9.82691, 

-000236 . . . 6-37373, -005 ... 7.69897, 
-0001 78 . . . ... . . .. . . . . . . . . 6.24947, 
.000414 = x : a. 

Thus a being 10956", x=4".5. This agreement with the 
computed error, as caused by the attraction of the Mahadeo 
mountains, is very satisfactory. 

The accident to the great theodolite had the effed of turn- 
ing  Colonel Everest's attention to the necessity of measuring 
every angle on different parts of the circle, the zero being 
shifted systematically through equal spaces-a practice very 
rigidly adhered to on the Survey ever after. Nevertheless 
he was not satisfied with his arc between Darnargida and 
Kalianpur : the errors in the sums of the angles of the tri- 
angles frequently amounting to 4" and 5". Accordingly, a 
few years after, the old theodolite was entirely re-made, a new 
one of the same size obtained, Ramsden's zenith-sector was 
replaced by two vertical circles of 36 inches diameter, and for 
base-line measures, Colbyls Compensation-apparatus was ob- 
tained. Thw armed with the finest instruments, he revised 
entirely the arc in question and extended i t  northward to 
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Banog in latitude 30' 29'. Here however the influence of the 
Himalayas on the latitude and also on the azimuth are very 
perceptible, and Kaliana, in latitude 29" 30' 49", was adopted 
as the northern terminus of the arc. Base lines were measured 
a t  Damargida, Kalianpur, and Dehra Dan, near the northern 
extremity. The comparison of the measured lengths of the 
terminal bases with their lengths, as computed from the base 
a t  Kalianpur, stands thus 

DEHRA DUN. DAUB~IDA. 
Measured length in feet 39183.87. 41578.54. 
Computed ,, ,, 39183.27. 41578.18. 

Grmt improvements were also effected by Colonel Everest 
in the determination of azimuth by the increased number and 
systematic arrangement of the observations of circumpolar 
stars. Take for instance the following results of his own 
observations for azimuth of the ' referring lamp ' a t  Kalianpur 
in 1836. 

By 130 observations of 8 Urs. Min. . . . 179' 59' 53".120, 
115 ,, ,, 4Urs.Min.Bode ... 53.565, 
128 ,, ,, 51Cephei ... 53.420. 

But for the details concerning this arc, reference must be 
made to the work entitled An Account o f t i e  Neadurement oftwo 
Sectiom oftire Mericlimtal Arc of I d a  . . . , by Lieut.-Colonel 
Everest, F.R.S., etc. (1 847). The subsequent history of the 
Great Trigonometrical Survey of India is to be found in the 
volumes now being published by Major-General Walker, C.B., 
F.R.S. Vol. i describes the measurements of the ten base 
lines; vol. ii treats of the reduction of the triangulation by 
least squares. At  page 137, vol. ii, is a comparison of the 
observed azimuth a t  Kalianpur with the observed azimuths at  
sixty-three different stations in India, exclusive of those under 
the influence of the Himalaya and SGlimBni mountains. At  
thirty-four stations the discrepancy of azimuth is under 3", the 
largest discrepancy being one of lo". The conclusion on the 
evidence of all these meridional determinations is that the ob- 
served azimuth at  Kalianpur requires a correction of 1''.10. 
The position of Kalianpur is at  b in the adjoining diagram, 
which indicates by simple lines the various chains forming the 
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Principal Triangulation of India. Some of these are chains of 
single triangles, others are double chains or strings of quadri- 
laterals and polygons. The lettern a b c d e f g h i j indicate 
the positions of the base lines. 

Fig 7. 

Sir A. Waugh, who succeeded Sir George Evereat, relax- 
ing none of the precision introduced by his predecessor, 
extended (1 843-61) the triangulation by about 7900 miles of 
chain, mostly double, with determinations of azimuth at  97 
stations. Major-General Walker succeeding, added (1 861-73) 

some 5500 miles of triangle chains, mostly double, with 
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determinations of azimuth at  55 stations and of latitude at  
89. This work illcludes the entire re-meaanrement of Col. 
Lambton's arc from Cape Comorin to Damargida. The data 
of the Indian arc as hitherto used for the problem of the 
figure of the earth are superseded by these revised and ex- 
tended triangulations. The following table contains the 
latitudes of certain points and the distances of their parallels 
expressed in terms of the standard foot of England. The 
points marked with an asterisk are on the meridian of 75; the 
others are in the line of the original arc l. 

Each of the last five stations is one of a close group of several 
astronomical stations. The object of observing latitudes in 
this manner is the elimination of any purely local attraction ; 
thus, if A, B, C, D, E, be five stations in a group, C being the 
central station, the observed latitudes of A, B, D, E, are trans- 

' General Walker haa kindly supplied me with theee reaults, not yet pub- 
lished. They are not absolutely h l ,  as the method of least aquama has ru, yet 
only been extended over the sprrce ja i f ichg in the diagram including the 
boundary of that w e :  but it ie not likely that any very mnterial alteration 
will take plnce in the distance0 ae written abnve. I have not indeed made use 
of all the data sent me, which include some 84 atntions. The distances in the 
table are calculated from G e n e d  Walker'a Geodetic Latitudes : they are ne- 
d y  dependent to a slight degree on the elements adopted for the figure of 
the earth, viz. to the amount shown by the expression for ZiS in Chapter X. 

" p ' ~ ~ ~ ~ :  

8653153.1 
8051 100.7 
7739965.6 
7161851.5 
6372728.8 
5778810.6 
501498~.1 
4551346.4 
3575896.1 
a889541.a 
2438531.8 
17405'22.1 
1o1j11a.4 
............ 

STATIOXB. 

Shahpur* . . . . . . . . .  
Khimnana* . . . . . . . . .  
Kaliana . . . . . . . . . . . .  
Garinda* . . . . . . . .  
War* . . . . . . . . .  
ICalinnpur . . . . . . . . .  
Fikri* . . . . . . . . . . . .  
Walwari* . . . . . . . . .  
Damargida . . . . . . . . .  
D m r  (5) . . . . . . . . .  
Ehnur (5) . . . . . . . . .  
h g d o r e ( 3 )  ...... 

... Patchapnliam (3) 

... Kudankulam (6) 

 LATITUDE^. 

0 I ,I 

32 I 3406 
30 aa I 1.78 
a9 30 48.32 
17 55 30.02 
a5 45 10.93 
24 7 10 79 
aa I 3.77 
a o 4 4 2 1 . 2 7  
18 314.82 
16 9 46.13 
14 55 21.51 
1 2 5 9 5 1 . 7 9  
10 59 41.06 
8 1 2  10.44 
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ferred (by means of the triangulation connection) to C. Thus 
we have five astronomical latitudes for C, and the mean of 
the five is adopted as the final result for latitude, being freed 
to some extent from any effects of local attraction. The 
number of points in each group is indicated in the table by 
the number following the name of the station. 

The average length of the triangle sides is about thirty 
miles, very few amounting to sixty. In order to carry his 
triangles with tolerably long sides over the plains, Sir Qeorge 
Everest built masonry towers of 50 feet and upwards in 
height for his stations ; this height, however, together with 
the length of the triangle sides, was subsequently reduced. 
ARer many changes in the construction of the towers i t  was 
found that, on account of a liability to settlement, a hollow 
tower is best, allowing the theodolite to be accurately centred 
over the centre-mark of the station below. 

To secure the permanence of the principal triangulation 
stations they are placed under the protection of the local 
native officials, are inspected from time to time, and are 
annually reported on and kept in repair. For observation, 
luminous eignds-argand lamps by night and heliotropes 
by day-are exclusively used in India, the effective light 
aperture being regulated by the distance of the observing 
theodolite. 

The work entitled Account oftlre Observations and Galcuhtion8 
of Me P7incipl ~ n g u l a t i o n l  . . . , by Captain A. R. Clarke, 
R.E., London, 1858, describes the geodetic operations com- 
menced in this country by General Roy, prosecuted from 
1809 to 1846 by Colonel Colby, R.E., and completed during 
the directorship of General Sir H. James. The triangulation 
is not arranged, as in India, in chains, but covers the country 
with a general network, extending from Scilly to Shetland. 
A peculiar feature of this work is that the great mase of the 
observations, terrestrial and astronomical, have been made 
by non-commissioned officers of the Royal Engineerse. 

' Onhanee Trigonometrical Survey of Great Britain and Irelend. 
a Pm-emimnt among them, Sergeant James Steel (subequently Qunrtar- 

B.E. and Captab), a native of Wiahew, Lanarkehire. He enliated 
r miner, made h i d  a proficient in mathatics and astronomy, end, 

D 
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In  1862 the triangulation was extended through the north 
of France into Belgium, and from these measurements the 
distance of the parallels of Greenwich and Dunkirk was found 
to be 161 407.5 standard feet. Thus there is a well connected 
triangulation extending from Formentera to Shetland, afford- 
ing for the problem of the figure of the earth the following 
data : 

hxavord 1 ... 
North Rooa 
Great Stirling 
Kellie Law ... 
Durham ... 
Clifton . . . . . .  
Arbury ... 
Greenwich ... 
Dunkirk' ... 
Dunnose ... 

... Pantheon ' 
Carcassonne 
Barcelona ... 
Montjouy ... 
Fomentera ... 

The great Russian arc of 25'20' is described by the cele- 
brated astronomer, F. G. W. Struve, in two volumes, entitled 
Arc da dle'rulien de 25" 20' entre le D a n d e  et la mer glacble 
mesurk dqu i s  181 6, juaqu'm 1855 . . . . . .  ouvrage compod m r  
lea d t f i e n t s  mnG.i.inux et reilig6, par F. G. W. Struve. St. 
PBtersbourg, 1860. The chain is composed of some 258 tri- 
angles, exclusive of those required for the junction of the 
10 base-lines ; the number of astronomical stations a t  which 

attaining singular skill aa an observer, wan entrusted with the more delicate 
pa& of our geodetic survey--such as the measure&ent of the Salisbury P1.i 
Base with the Compensation apparatus-the field operationa connected with 
the detemimtion of the density of the earth at  Arthur's Sent, &c. 

For the latitudes of these stations see the remarks, page 1 8 2 ,  of the volume 
entitled Compariso~ of the Shndarda of Length o j  England, Prance, Belgium, 
PrueaM, Russia, kc., ma& at Soutlinmpton. By Cap& Clarke, R. E. - 
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the latitude and direction of the meridian were determined is 
thirteen. The arc may be divided into seven sections, thus : 

Beamrabia ......... 
Podolia and Volhynia 
Lithuania . . . . . . . . .  
BslticProvinces ... 
Finland . . . . . . . . .  
Lapland . . . . . . . . .  
Finrmvk . . . . . . . . .  

0 ,  0 1  

45 ao & 48 45 General de Tenner 
48 45 ,, ja 3 General de Tenner 
52 3 ,, 56 30 General de Tenner 

... .. 56 jo 60 5 F. G. W. Stmve 

... .. 60 5 65 50 F. G. W. Stmve 

... .. 65 50 68 54 M. Selander 

... .. 68 54 70 40 M. Hunateen 

In the southern part of the arc for a space of 8', from the 
Duns to the Dneister, a fiat and marshy country covered with 
immense and almost impenetrable foresta, presented great 
obstacles to  the prosecution of the work, a difficulty overcome 
by General de Tenner by the erection of a great number of 
scaffoldings of 120 and even as much as 146 feet high. 
Struve's work should be studied by all who are interested in 

geodesy 
The final results of the arc, after reducing Struve's distances 

to English feet, are contained in the following table :- 

SFATIONS. 

......... Fuglenaea 

. . . . . . . . .  Stuor-dvi 
. . . . . . . . . . . .  Torn- 

. . . . . . . . .  Kilpi-meki 

. . . . . . . . .  Hogknd 
. . . . . . . . . . . .  Dorpat 

. . . . . . . . .  Jacobatadt 
Nemesch . . . . . . . . .  

. . . . . . . . . . . .  Belin 
Kremenetc . . . . . . . . .  
hprunkowzi ...... 

. . . . . . . . .  Wodolui 
Skm Nekrassowka ... 

LaTm,,DEs. 

0 t ,I 

704011.23 
68 40 58.40 

65 49 44.57 
62 38 5.15 

60 5 9.84 
58 aa  47.56 
5630 4.97 
54 39 4.16 
52 2 42.16 

50 5 49.95 
48 45 3.04 
47 I 24.98 
45 ao a.94 

DIBTANOE OF 
P A B A L L ~ L ~ .  

9a579z1.1 
8530517.9 
7486789.9 
6317905.7 
5386135.4 
4762421.4 
4076~12.3 
340031a.6 
2448745.2 
'737551.5 
1246762.a 
616j29.8 
............ 
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The arc measured a t  the Cape of Good Hope1 by Sir Thomaa 
Maclear, presents the following data :- 

For an account of the triangulations completed or in course 
of completion in Denmark, Spain, Italy, and other countries 
of Europe, reference must be made to the Pirliandlungen b 
permasrenten Cornmiasion de7 Europct'McAtn Gradmeseuttg,-the 
yearly reports of the International Geodesic Association. 

Determinations of differences of longitude by the electro- 
telegraphic method have in the last few years attained a 
high degree of precision, and have been extensively carried l 
out in Europe, America, and India ; the Indian determinations 
contributing largely to  our knowledge of the figure of the 
earth. I n  Algiers an arc of parallel is being completed by 

~ 
M. le Commandant Perrier ; and the details of a European 
arc of parallel from the West of Ireland to Orsk in Russia 
may be soon expected. 

The probable error of an obeerved difference of longitude 
by the electro-telegraphic method may be about + 08.025. 

Ver$cation a d  Extm'on of LireailW~ Ara of dieriddm at the Cape of 
Good Hope. By Sir Thomaa Maclear. London, 1866. 

~ P ~ ~ ~ f  

1678375.7 
1632583.3 
1526386.8 
81 1507.7 
............ 

STAT~OSS. 

Cape Point ......... 
Zwart Kop ......... 

... Royal Ohrvabry 
Heerenlogement Berg 

......... North End 

~ r ~ m ~ n s .  

0 # ,, 
34 21 6.26 

34 13 32.13 
33 56 3-20 
31 58 9.11 

ag 44 17-66 



CHAPTER 11. 

SPHERICAL TRIGONOMETRY. 

1. 
IN trigonometrical calculations an angle is not limited as in 

Euclid to two right angles. If a straight line OP passing 
through the intersection of the i*ectangular coordinate axes 
X'OX, Y'OY make an angle a with OX, then as OP revolves 
round 0 in the direction X to P, starting from the position OX ; 
a, initially zero, becomes in succeseion t x ,  r, %.a, 2 x, . . . . Or 
if the rotation be in the opposite direction, the angles increase 
negatively. A finite straight 
line as B C  is determined' 
completely by its length and 
direction,and the coordinates 
of one of its extremities. 
But with respect to direc- 
tion, it is frequently neces- 
sary t o  discriminate between 
the directions BC and CB, 
which differ by 180". I f  a X' 

be the angle made by BC 
with OX, and the length of u1 

A 

C 

B 

/ X 
0 

BC be a, then the projection ~ i g .  8. 
of B C  on OX is a cos a, and 
the projection of CB is -a cosa. From C, let there be drawn 
the line CA = 8, making an angle p with OX, then the pro- 
jection of BC+ C.4 is a cos a + 6 coe p ; then, if also d B  = c, 
and its direction be y, its projection is c cosy, so that the 
projection of BA is -c cos y, and this is equal to 

acosa + bcos /3 .  
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I n  a similar manner projecting the three sides of the triangle 
on OY, 

asina+bsin/3+csiny = 0. 

The angles of the triangle being 
A = 180°+/3-y, 
B = -18O0+y-a, 
C =  18O0+a-/3; 

if from the two previous equations me eliminate first c and 
then y, we get 

bs ind  = as inB,  
a2-2dcos c+a2 = ca, (1) 

which are the fundamental equations of plane trigonometry, 
and contail1 implicitly the solution of all plane triangles. The 
second equation really contains the whole, as the first can 
be w i l y  made to follow from it. 

Mre may also deduce the following equations which we 
shall find useful hereafter 

h2cos2~+2bccos( /3+y)+~2 ~ 0 8 2 ~  = a2 cos 2% 
b2sin 2/3+2bcsin(/3+y)+c2siP2y = a2sin2a,  

and so on. 
Let PP, = Pl Pa = s,, P, P, = a, . . . be the successive 

sides of a plane polygon PP,P,, . . . making angles a, cr, cg, . . . 
with a line P X  through P. If P,' be the projection of P, on 
PX, let PP,' = tm, <P,' = q,: let also the external and in- 
ternal angles of the polygon at  P, be T+ a, and =-cr,, so 
that a, = al-q-u, ...- aPl .  Then if 

p, = si sin ai and Q, = s, cos rq, 

6s =¶1+4z+*.*qn, t l n = P ~ + f ) z +  ...P*, 
are the coordinates of P,. Let each side and angle receive an 
increment, then the alterations of &, q are 

as1 4 lad, dfn  = 9, - + q2 - + 9, - . . .-pldal-p2d%. . . -pndan, 
81 aa 8s 
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Am An-1 Now p u t  ---- - dB,,-, ; then 
8, 8,-1 

-- &I - dS, dal = da,, 
81 

4 = dS+d&,  da, = da,-dm,, 
82 - 

3 = dS+dSl + dl$, da, = dal-dal-do2, 
8.1 

and so on. Then if P, be the last point of the polygon (in 
fact P), the variations of its coordinates as calculated through 
all the Bides and angles are them 

-d& = [ldSl+[gdS2+... +ti-, d8i-1+v,dq (3)  
+T2d~,... $Ti-ld~'-l, 

-dqi = 71d&+~2dSe+  ... +t]i-ld&-l-tldal 
-&due . . . - & - , d ~ ~ - ~ .  

The fundamental equations of spherical trigonometry may 
be moat readily obtained in the following manner. Join 0 ,  
the centre of the sphere, with 
the angular points BBC of c 

the spherical triangle : let 
Q, R be the projections of C 
on A 0  and OB, P its pro- 
jection on the plane BOB, S 
the projection of Q on OB. 
Then 

OR t OS+ PQ sin c, 
P R  = QS- P Q  COS c, A 

QCsinB = RCsin B; B 

either member of the last Fig. g. 

equation being the perpendicular C P. 
Here make the following substitutions :- 

OR = cos a, 08 = COB Q cos C, 

CR = sin a, P Q  = sin b cos 8, 
0Q = cos 6, P R  = sin a cos B, 
CQ = sin 6, QS =cosbsinc; 

and we have immediately the first three of the following set 
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of equations. Moreover, if B be projected on the plane BOG, 
we get the additional fourth and fifth 

cosa=cosbcosc+sinbeinccosA,  
s inacosB= cosbeinc-sinbcoeccos8, 

(4) 

s i n a s i n B =  einbmnA, 
sinacos C = sin b coec-cosb einccos8, 
sina sinC = sincein8. 

These are not independent, for if we add the sum of the 
squares of the first three we are led to an identical equation- 
so also by adding the squares of the first, fourth, and fifth. 
They are therefore equivalent to only three equations, so that 
if 6, c and the included angle A are given, we obtain a, By and 
C with two checks. But the first equation of the group may 
be shown to contain the whole ; for, form from it the values 
of 1 f cos A, and put 

a + b + c  = 20, 
-a+b+c = 20,, 

a-2r+c = 2a,, 
a+b-c  = 2u,; 

then at  once 
sin 0, sin u, t 

s i n 4 8  = ( 
sinbsinc 1 a 

multiply these togebher and we aee that 

sinA s inB einC -- --=-y 

sin a wn b sin c 
which contain the third and fifth equation of group (4) ; and 
the second and fourth follow. 

3. 
From the expressions, just written down for the sine and 

coeine of 4 A, those of the o t h r  angles follow. We may find 
from them at  once the following expressions for the sines and 
cosinea of the half wms and half differencee of B and C:- 

sin 4 (B+ C) - cos 4 (6-c) - 
cos f A cos 4 a 
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cos4 (B+ C) - cos&(b+c) 
sin 4 A - COB 4 a ' 

sin 4 (B- C) sin f (6-c) - - 
COB f A sin f a ' 

cmt(B-C) - - mnf(b+c) 
sin 4 A sin f a ' 

These important formulae, which were first given by De- 
lambre, are generally known as Gauss's Theorems: from them, 
by inter-divisions, the well known Napier's analogies follow. 

If A be the spherical excess or area of the triangle, so that 

'A = A+B+C-r,  
sin4 A = sin4 (B+C)  sin f A-cosf (B+C) cosf A. 

Take half the difference of the first two equations of the last 
group, and we get 

sin4 bsinf c 
sin 4 A = a n  A, 

cos 4 I 
or putting for sin A its equivalent 2 sin 4 A cos f A, 

(sin u sin u, sin r2 sin m,)t  
sin f A = 

2 ~ o s ~ a c o s ~ b c o s f  c (7) 

Let F be any point in the side BB of a spherical triangle, 
join Cli: and let this divide the 
angle C into segments Cl, C2, the 
corresponding segments of AB 

putting CF = f, the cosine of 
BPC is represented by either side 
of the equation 

- cos a + cos c, cos f 
A 

sin c2 sin f c, 

- cos b -COB c, cos f - Fig. 10. 
sin c, sin f ' 

which gives 
sin c, sin c, 

cos f = cosa- + cosb-• 
s ~ n  c sin c 
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Divide both sides of this by sin f and then multiply nume- 
rator and denominator of the right-hand side by sin F, thus 

cos a sin c, sin F + cos b sin c, sin P 
cot f = 

sin c sin f sin F 1 

but 
sin c, sin F = sin b sin C,, 
sin c, sin F = sina sin C,, 

sin f sin c sin F = sin a sin b sin C; 

and by the substitution of these i t  follows that 

sin sin C, 
cot f = cot a - + cot b ---- . 

sin C sin C 

It is frequently necessary to determine the difference of two 
nearly equal angles from the given difference of their cosines, 
thus in the equation 

c and a being given, P is to be found. Let @-a = 2x, then 
sin (a + x) sin a = c, and expanding, we get the bi-quadratic 

sin4x-(sinPa+ 2ccosa) sin2x+c2 = 0, 

of which the required roots are 
C 

sin 4 a cos 4 a k sin 4 (@-a) = 
C C (10) 

1 + 7---- ( .,n2 4 a 

For instance, if in the spherical quadrilateral PQpp the angles 
P, Q are right angles, and the sides Pp, Qq are equal, say 
each = 8, then producing these sides to meet in a point 8 ,  

where 8 = PQ and a =pq.  Then the formula (10) leads 
to this- 

sin 8 sin \lr 
sin 4 ( 8  - a) = 

1 +cosbcosJIJ 

Or, t a n ) ( A - a )  = t an4  btan$\lr, (I1) 

where 2 JI is the spherical excess of the quadrilateral. 



SPHERICAL TRIGONOMETRY. 43 

5. 
Differentiate the first equation of group (4) and in the co- 

efficients of db, dc substithe respectively from the fourth and 
second equations of the group, then dividing through by sina, 
the result is the first of the following set of equations ; the 
second and third follow by cyclical interchange of symbols : 

da-cosCdb-cosBdc=sincsinBdA,  (12) 
-cos Cda+ db-cos Adc = sina sin CdB, 
-cos Bda-cos Adb+ dc = sin b sin AdC. 

From these either by eliminat,ion or by the use of the polar 
triangle, we get 

dA+coscdB+cosbdC=s inBs incda ,  (13) 
coscIZA+ dB+cosadC= sin Csinadb, 
cosbdA+cosadB+ dC=sinAsinbdc. 

These may be again put in the form 
sinBdn-eoscsin Adb-sina cosBdC= sinctld, (14) 

--coscsinBda+ s inAdb-sinGcosAdC=sincdB,  
cos Bda+  cosAdb+sin b sin AdC= dc; 

and the polar triangle gives 
sinbdA+coa CsinadB+sin Acosbdc = sin Cda, (15) 

cos Csin ddA+ sin a d B +  sinB cos adc = sin Cdh, 
-cos bdA- cosadB+sinBsin adc = IZC. 

Suppose, for example, the side c is constant, and that the 
angles A, B are liable to errors dB, d B  ; then the corre- 
sponding errors in the other parts of the triangle will be 
known by making dc = 0 in the preceding equations : thus 

sin Cda = sin bdA+cos Csin adB, 
s inCdb=cosCsinbdd+ sinadB, 

d C =  -cosbdA- cosadB. 
(16) 

6. 
I n  the case of the right-angled spherical triangle, A being 

the right angle, the general formulae become 
sin a sin B = sin 6, (17) 
sin a cos B = cos b sin c, 

cos a = cos b cos c, 
sin a cos C = cos c sin b, 
sinasinC = sinc; 



which, as in the general case, are equivalent evidently to three 
equations. 

Suppose the sides b and c given, then we get tan B and 
tan C. Or more conveniently thus : let B = 90"- 7, then 
by Napier's analogies, or equations (5) 

t an+(B+C)  = 1 +tan f (C- P )  - cos f (b-c) . 
I-tanf (c-7)-cosf(b+c)' 

whence the following 
tanf(C-P) = t s n t b t s n f  C, (18) 
t a n f ( C + P ) = c o t f b t s n ) c ;  

by this method two logarithms are looked out instead of four. 
From these also, if B, C be given, b and c are easily obtained. 
Again, if the angle B and the adjacent side c be given, then 

by ( 5 )  
tanf (a+b) = tsnfccotf  7, . (l9) 
tan+(a-b) = tanfctanf  P; 

where again the factors on the right are only two in number. 
Let us now in the right-angled triangle suppose the case of 

the side c being small, in which case also are C and P small. 
We have here from the fourth and fifth of (1 7) 

t s n c  1 -- - -3  
tan c sin b 

put for a moment the right hand member of this equation 
= k;  then expanding the tangents into series, we have 

C+$C3+;rC6+... = ~ ( C + $ C ~ + ~ ~ C ' + . . . )  j 

let C = kc+Ycs+ k"c6+. ,., then by the method of indeter- 
minate coefficiente, me easily arrive a t  the result 

Replacing the value of k, and bearing in mind that 

sin(b+x) = sinb(l+xcotb), 
when the square of x is neglected, we find 

the terms omitted in this approximation are in c6. Again, by 
the second and fifth of (1 7) 

sin J'= sin Ccosb; 



SPHEBICAL TBMONOYETBY. 

which omitting only terms in c6 may be put in the form 
P =  Ccos(b+$@cotb). 

Again, a exceeds b by a small quantity, 0 say, then 
cos (b + s) = cos b cos c, 
c e c4 :. E = - cot b - - ( I  + 3 cota 6) cot 6. 
2 24 

Supposing then that we may omit the fourth power of c, 
the solution of the triangle is this 

C C= 
sin (b + $ 11) ' 

With respect to the error aommitted in neglecting the part of 
a-b which depends on c4, suppose c to be one degree, then if 
b = so0, this term amounts to 0".014 ; if b = 45' i t  amounts 
to 0"-003. 

I n  the more general case in which c is small, but A not a 
right angle, there is a useful application of the series (20). 
We know from (5) that 

and putting for a moment k for the right hand member of 
this equation, (20) gives 

a-b c4 
1-8)+-(1-8)(2-3k2) ... j. 

c 240 
I n  computing a - b from this formula, k and c being given, 

the error involved in omitting the term in 8 is very small ; 
for the greatest numerical value of k(1 -P) (2 -3 k2) cor- 
responding to the value of k, satisfying the quadratic equation 
1514-15ke+2=0,is0-51 .... I f t h e n c b e a s m u ~ h a s 2 ~ ,  
the term in c6 amounta at  a maximum to 0".000022; i t  may 
therefore in all csses be neglected, and me have thus 
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Let S be rt point within the given right-angled triangle 
ABC, such that BS = AB = c, and 

B A38 = 8 : it is required to find the 

-P 
angle ACS. Let this angle = v, and 
cis = 5; then 

siu 7, sin 5 = sin SA cos SAB 
= sin 2 c sin2 4 8. 

Here replace sin C by its equivalent 
sin (B-8) 

sin c 
sin (C- 7,) ' 

and me get 
2 sin2 4 8 cos c sin C 

tan 7, = 
sin(B-8)+2 sin2 ~ e c o s e c o s ~ ~  

K - - tan C 
Fig. 1 1 .  seo2 c sin (B- d) ' + 2 s i n 2 t 8 s i n B  

either of these expressions is convenient for the calculation of 
tan 7,. The case applies to the determination of the azimuth 
of a circumpolar star, B beingethe pole of the heavens, C the 
zenith, and A the place of the star S when at  its greatest 
azimuth. When 8 is small, then approximately 

2 sin2 f 8 cos2 c tan C. 
7, = 1-cotBsin9 ' (23) 

of which the error is, very nearly, sin4 4 8 sin2 2c tan C. 

7. 
Consider next the caee of a spherical triangle all of whose 

sides are small with respect to the radius of the sphere. Let 
A', 3, C' be the angles, and A' the area of a plane triangle 
whose sides are a, 6, c, the same as those of the spherical 
triangle ; then omitting small quantities of the sixth order, 
(7) becomes 

(sin u'sin u, sin u, sin us)* 
A =  ~t a 4 b 4 
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Now we have 
t sin o2 sin u3 t 

sin 4 A cos 4 A' = (3) ( 
sin b sin c > 

a a + sin a sin crl t . 
cos4Asinf A'= ( dc ) ( sinbsinc 1 * 

A' :. h 4 ( A - 6 )  = - 
bc sin 6 d n  c + 3 

(T*?) 
aB o4 

and since, s in4  a = at (1 - - 
12 + 1440). and 

as-aa~+a,2-a32 = 2bc, 
o4 - aZ4 + uI4 - a,' = bc (3 a" P + cs), 
aa2u~-$a ,2  =+bc(aa-b2-$), 

we get 
ae+7b2+7c2 

A - L = + A ' ( I +  120 1 
Replacing A' by A from (24) we get the first of the follow- 

ing equations, the second and third following by symmetry : 

If here we omit the terms of the fourth order we have 
Legendre's Theorem, which is this : the angles A, B, C of a 
spherical triangle whose sides are a, 6, c, supposed very small 
with resped to the radius of the sphere, are equal to the 
corresponding angles of the plane triangle whose sides are 
a, b, c, increased each by one-third of the spherical excess of 
the triangle. 

The use of Legendre's Theorem greatly simplifies the 
solution of triangles in practical geodesy ; it remains to be 
seen how far i t  can be used with safety. I f  c be the spherical 
excess of a triangle, then the side c being given, we have by 
Legendre's Theorem 

a = c sin (A- + c) cosec (C- & c), 

b = c sin (B-4 c) cosec (C-4 c). 
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Let aa, 3 b be the errors of the sides so computed. They 
will depend on the actually adopted value of c, which may be 
computed in more than one way: we shall therefore first 
exprem the errors in terms of an arbitrary c, thus 

sin A 
a a =  c sin ( A -  * '1 - sin-1 (sin c ,) . sin (C- 4 c) sin C 

By the verification of the following steps 
-6% - C Z  (I+ 12 cot C-cot A = 

ab n n  C 1 
sin A a 2 c 

C = c _  + 
sin(C-&c) B ~ C  6 ab sm C 

sin A s i n d  a as 7c2 
sin-I (sin c -) = c - + ( a 4 - ~ 2 )  (1 - 20 + -). 

slnC sin C 60 

in the second of which r2 is replaced by 4 aa b2 sina C, we find 
a 2 e 

a a  = (a2-cs)  (- - 
a b sin C 60 

If therefore we calculate c by the formula 2 r = a6 sin C, 
the errors of the resulting sides will be l 

But if we compute c by the formula 
. r sin f a sin f b sin C 

Sln- = 
2 cos 4 1 

or, which amounts to the same t,hing, by the formula 

the errors are 

Suppose, for exnmple, to take a numerical w e ,  that the 
sides of the triangle are a = 220, 6 = 180, c = 60 miles, 

See Aceotint of the Principd Triangulath, we 245. 



then by the  first method of caloulating the spherical excess, 
the errors of the resulting sides in feet would be 

2a = +0.068, 38 = + 0.026. 

By the second method the errors would be 

ba = -0.031, a6 = -0.030. 

We iufer that the errore resulting from the uee of Le- 
gendre's Theorem are of a minute order, and that they cannot 
prejudice any applications that can be made of i t  to actual 
use. 

In the case in which a, 6, and C are given to find A, B, 
and c, if c = aabsinC, we have 

c mn 4 (A-B) = (a-6) cos 4 (C-4 c), (28) 
ccos +(A-B) = (a+h)sin4(C-+c), 

4 (A+ B) = 90"-f C+ a E. 

For the determination of the coordinates of points, Le- 
gendre's Theorem is applied thus. Let P, P,, P,, . . . be the 
angular points of a spherical 
polygon, of which the sides, aa 
well as the angles they contain, 
are. given. Through PIP ,... 
draw perpendiculars to the great 
circle PM meeting i t  in p, pa.. . . 
Take p, in Pa p,, so that p, q, = 
Plyl, and join Pl q, by an arc of 
a great circle. Let PP, = q, PZ 

PI P, = 8,. . ., and let the exterior 
and interior angles a t  P, be 

P 
1 80 k o, ; put also a,, a, . . . for the ~ i g .  11. 

angles P I P p l ,  P,P,q, ... . Then 
the angles and spherical excesses of the triangles PIPp,, 
P, Pl q, being 

P1Pp1: a,, fr, Pl, €1; 

P~PIQ~:  , 4n-4E', &, €2; 

E 
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where C is the spherical excess of Pl pl p2 q, , we have 
p, = go0-%+el, 
~2 = a,-ul-5-4 c', 

B1 = pl++l+f*+C. 
Further, put 

PP, = "1, p1q2 = 4, PP, = x2, 
P1~1=~1, P g q e = ~ d ,  P e ~ 2 = ~ 2 ,  

then by Legendre's Theorem, in the triangle Pl Pp, , 
c ~ s ( ~ l - i l c ~ ) ,  sin (al - + c,) x1 = a1 

COS 4 F1 y1 = 81 COB$ Fl 

Practically, we may neglect the divisor cos + el, and take 

"1 = 81 cog (Q1- d cl), Y1 = 81 sin (a,-+ c,). (29) 
The errors of these expressions, if el is calculated by the 

formula el = f 8: sin a, cos a,, are 
8' 

2 y, = - (2 2 sin2 ~1 - 3) sin ~1 cosaa, 
360 
8' 

2 x1 = -- (1 - 1 3 sine a,) sina a, cos al ; 
9 0 

which may always be neglected : that is, for a distance 8 of 3" 
they amount a t  a maximum to O"-OOO7 and OM.0027 respectively. 

So also in the triangle Pa Pl q2, 
r ; = a e ~ o s ( ~ - ~ ~ e - ~ ~ ) ,  y ; = u , s i n ( ~ - + ~ ~ ) ;  

where d = x i  y, ; and finally, 

Y,=Y,+Y;, x e = ~ l + ~ ; + a ~ l d ;  (30) 
the last following from (1 1). 

0. 
The expansion of (1 + 2 n cos 8 + l c2 ) -8  is one of importance 

in geodetical as in other calculations : i t  is proposed to expand 
this in a series proceeding by cosines of multiples of 8. 

thus we have 

which multiplied out becomes 
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#(a+ 1 ) 2  = l + d L n a + -  ... 
1 .22 

n + 
1  '1 ns+ ...I -(.+$(a+ 1 . 2  

- 1 a ( a + 1 ) n 2  + # ( a +  1 ) ( 8 + 2 )  
+ (2+ tT 1 . 2 . 3  %'I 
- ('+ f ( 1 . 2 . 3  

The term in n4 is retained, though however it will not be 
actually required. We are more immediately interested in 
t.he cases in which 8 = 4 and a = P : they stand thus, 

- c o a 3 0 ( 7 n 3 +  ................... ) 
We have also for the logarithmic expansion, 

where H is the modulus of the common system of logar- 
ithms : log M = 9.6377843.  



CHAPTER 111. 

LEAST SQUARES. 

THE method of least squares, foreshadowed by Simpson and 
D. Bernoulli, was first published by Legendre in 1806. I t  
had however been previously applied by Gauss, who, in his 
Thewia Hotus, &c., 1809, first published the now well-known 
law of facility of errors, basing the method of least squares on 
the theory of probabilities. The subject is very thoroughly 
dealt with by Laplace in his Th%rie analytique dea probabi- 
lit&: it is full of mathematical difficulties, and we can here 
give but the briefest outline. I 

The results of a geodetic survey, whether distances between 
points, or azimuths, or latitudes, are affected by errors which 
are certain linear functions of errors of observation ; thus the 
precision of the results depends first on the precision of the 
angular and linear measurements ; and secondly, on the manner 
in which those measurements enter into the results. Consider 
first the observations of a single angle. I n  order to avoid 
constant errors that would arise, for instance, from errors of 
graduation, and from any peculiarity of light falling on the 
two signals observed, the observations are repeated on different 
parts of the circle, and at  different hours of the day, and on 
different days. The expert observer bears in mind that the 
probable existence of unrecognized sources of constant error I 

renders i t  useless to repeat the same measurement a large 
number of times in succession under precisely the same cir- 

~ 
cumstances. With measurements thus carefully made, and 
in large numbers, i t  is to be assumed that the arithmetic 1 
mean is, if not the true, at any rate the most probable value of 



the angle, and the differences between the individual observa- 
tions and the mean are the apparent errors of obeervation. 
Of course the sum of these errors is zero, and positive and 
negative signs are equally probable; and it is a matter of 
observation, or fact, that if such errombe arranged in order 
of magnitude, the smaller e m r s  are more numeroue tban the 
larger, and-mietakes excluded-beyond a certain (not well 
defined) limit, large errors do not occur. This leads to the 
conception of a possible law of distribution of errors. Suppoee 
the number of observations inddnitely great, the errom being 
capable of indefinitely small gradations, then i t  is conceivable 
that the number, y, of errors lying between the magnitudes 
x and x + dx may be expressed by a law such as y= 4 (4 & ; 
a function which is the same for positive and negative 
values of x, and which mud  rapidly diminish for increasing 
values of x. Here y also expresses the probability of any 
chance error falling between x and x+dx, provided the in- 
tegral of &between the limits + w be made = 1. 

The nature of the function 9 has been investigated from 
various points of view, each investigahon presenting mme 
difficult or questionable pointa, hut all ending in one and the 
same remlt. We shall here give the method propoeed by 
Sir John Herschel, though its validity hss been questioned. 
Let a stone be dropped with the intention that i t  shall strike 
a mark on the ground ; through this mark suppose two straight 
lines drawn at  right angles. Taking these lines as axes of' co- 
ordinates x , ~ ,  the chance of the stone falling between the 
distances x, x + da, from the axis of y is 9 (a2)  dx, and the chance 
of its falling between the distanw y, y+dy from the axis 
of x is $(y2)dy. Then regarding these as independent 
events, the chance of the stone falling on the rectangle dx 
dy is 4 (x2) rp (yZ) & dy, or generally 4 (x2) 4 (y2)  du when du 
is an element of area about xy. But this chance is not de- 
pendent on the particular direction of the axes; if then x'y' 
be other coordinates having the same origin, 

4 ($1 9 (Y) = 9 ( ~ ' 7  + ( i 2 )  
ifd +?=0" + f 2  ; an equation of which the complete solution 
is 4 (9) = Ced. Since however 9 (x2) diminishes as x in- 
creases, c must be negative ; write therefore - 1 : c 2  instead 
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of e. Then, since the integral of +(xe)& between + oo is 
to be unity, and since 

i t  follows that CcJn = 1. Thus the probability of an error 
between 0 and x + & is 

and this expresses also the number of errors between x and 
x + dx, the whole number being supposed to be unity. 

a. 
Let p, be the mean value of all the errors without regard 

to sign, ifrn the mean value of their qnarea, then 

C 

J n '  

From the intimate relation thus shown between c and the 
average magnitudes of the errors, it has been called the 
modulus1 of the system; i t  is large or small according as 
the observations are of a coarse or a fine kind. 

I t  follows from this that the number of errors whose 
absolute magnitudes are between 0 and t c is 

The values of this important and well-known integral have 
been tabulated for all values oft.  For instance, the number 
of errors less than 4 c, c, 2c, respectively are 

f14, = -520, N, = ,843, Ngc = -995. 

Thus only five errors in a thousand exceed 2c. There is a 
certain value of c, call it c'=pc, to which corresponds the 
value of N= 4, so that half the errors are g ra t e r  and half are 
less than c'. This c' is called the ' probable error,' since the 
probabilities of an error exceeding i t  or falling short of it are 
equal ; and the value of p found from the tabulated values of 

Airy, !I'huny of Error8 o j  Obaerocrtion, page 15. 
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the integral is -477. The integral (4) gives also the number 
of errors between 0 and ic', if t = ip, thus for the successive 
values of i= 4, 1, 2, 3, 4, 5, the vnlues of N are 

-264, -500, -823, ,957, -993, -999. 
So that  i n  a thousand errors, seven, for instance, exceed four 
timea the probable error. From (3) it follows t.hat 

c' = k 0.674 p,6. 

3. 
I f  aX be a miiltiple of an observed quanbity X, in the 

observations of which the modulus is c, then the modulus in 
the corresponding system of errors of a x  is clearly ac. 

The probable error of the sum of two quantities affected by 
independent errors is the square root of the sum of the squares 
of their separate probable errors. Thus if X+ Y= Z, and the 
moduli of the system of errora in X and Y be a  and b  respect- 
ively, then the law of facility of errors in Z is the ssme func- 
tion + as before, bnt with a modulus = Ja" b2. 

For the error z in Z being the sum of an error x in the 
fir& system, and an error y = z - t  in the second, the chance 
of the concurrence of errors between x and x +a%, and between 
z-a and z-x+dz ie 

1 -"f -- (2-1)s &+b* ~ a s  ( fz --5- -- I-- 
- a' dx. a - --a a x t b g  e ax' ( .'+by)' dZ. 
?rub n a b  
To include all combinations this expression must be inte- 

grated, conridering z constant, from x = - a, to x + w . 
Thus, bearing in mind the integral ( I ) ,  the probability of an 
error between z and z + dz is 

so reproducing, in a remarkable manner, the function 4. 
The result would have been the same if we had had 

X- Y= 2; and i t  may be extended to any number of qnantities. 
Thw, if U be the mean of i measures of a quantity, the 
modulus being c, then i t  will follow that in the lam of facility 
of error of U the modulus is 
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so also if d be the probable error of a single observation, that 
of the mean of i observations is d : 4 i. 

I 
The fraction i : t9 is called the weight (= w) of the deter- 

mination of U; so also w = i : 2 h ,  and the probability of an 
errorxin U i s  

ao t 
y = (--) 6-@ d ~ .  

So also the modulus for errors in a U is a : J w .  

4. 
Let now U, = a, U, + a, Ua+ . . . be a linear function of 

mwured quantities U,, U,, ... , of which the weights are wl, 
w,, ... , and the probable errors c,, F,, ...; then, from what 
has been proved in the preceding paragraph, i t  follows that 
the modulus for U, ie 

and the probable error of U, is 

This me shall now apply to an imports& case. I n  calcn- 
lations connected with geodesy i t  is often necessary to deter- 
mine a system of unknown quantities x, y, z . .. from equations 
of the form a,x+b,y+c,z+ ...+ m, = 0, 

a,x+b2 y+c,z+ ... +mz = 0, 
(6) 

and so on ; the number of equations being greater than the 
number of unknowns. The coefficients are given numerical 
quantities, and q, m, , . . . are observed quantities with weights 
w,, wa, ... On account of the errors in m,, m,, ... the equations' 
do not hold good ; in fact, inatead of zero in the right-hand 
members we must write el, e,, . . . the actual errors of m,, %, . . . 
Now each of the quantities x, y, 2,. .. must be made to depend 
on all the observations; let therefore the equations be mul- 
tiplied by certain multipliers k,, k2, . . . and added together ; 
also assume k,al+k2a2tk3a3+ ... = 1, 

klbl+k,bg+k3b3+ ... = 0, 
(7) 

k,c, +k,c, +k3c3 + ... = 0, 
kc. ; 
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then 
x+k,ml+k,m,+k3m, ... = k,el+k,e,+k3e ,... . 

1 Thus the probable error of a is 

The values of k  must therefore be so determined that this 
shall be a minimum subject to the conditions (7). For the 
sake of simplicity, and a~ indeed the most ordinary case, eup- 
pose the weights equal, then we have to make k,B + k,2 + . . . 
a minimum. Differentiating this expression and also the 
equations (7), 

0 = k l d k l + k , d k , + k 3 d ~  ... , 
0 = %dkl+a2dk,+a3dk3 ... , 
0 = dl dk,+b,dk,+b3dk3 ...; 

and so on. According to the usual method of the differential 
calculus, multiply these by multipliers - 1, A,, A,, .. . , and 
adding together the equations, we get, on equating to zero the 
coefficients of dk,, dk,, dk,, . . . , 

k1 = %Al+dlA,+qA,+ 
k, = a,Al+b,A,+c,A3+ ... , 
k3 = a 3 A 1 + ~ , ~ , + c 3 ~ , +  ..., 

&c. 
Substitute these in (7), and for 1% bl + as 6, + . . . put (a  b), so 

. that ( a  a), for instance, means the sum of the squares of tile 
a's ; thus 

1 = (au)A,+(ad) A,+(ac) A,+ ... , 
0 = ( a d ) ~ , + ( b d ) h , + ( b c ) A ~ +  ... , 
0 = (ac)hl+(bc)A,+(cc)A3+ ... , 

&c. 
Put  V for the determinant formed by the coefficients of this 

I equation, [aa]  for the minor of (aa),  &c., then 

i V h ,  = [ a a ] ,  V h ,  = [ad] ,  V h ,  = [ a c ] ;  
so that 

V k ,  = a l [ a a ] + 4 [ a b ] + c l [ a c ]  ..., 
V k ,  = a , [aa]+b , [ab]+c , [ac]  ..., 
V k, = a,[na]+b,[ab]+c,[ac]  ... , 

&c. 
Multiplying these by m,, m,, ..., and adding 

0 = V x + ( a s n ) [ a a ] + ( b m ) [ a b ] + ( c m ) [ a c ]  ... . 
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Now this, with symmetrical expressious for Vy, Vz, . . . , 
are what would have resulted from the solution of the 

I 
equations 

(aa)x+(ab)y+(ac)z +...(am) = 0, (8) I 

( a b ) ~ + ( b b ) ~ + ( b ~ ) z  +... (bm) = 0, 
(ac)x+(bc)y+(cc)z +... (cm.) = 0, 

ho. 
and these equations are in fact what we should have arrived 
at  if me had set out with the intention of determining x, y, z, . . . , I 

~ 
so that the sum of the squares of the errors Z (e2), or 

I 

should be a minimum. Exactly in the same manner, if we 
had retained the separate values of wl, w,, . . ., we should have 

~ 
found that z, y, x, . . . are to be determined so as to make I 

Zw(u+2iy+cz+ ...+ m)= (9) 

or Z (we2), a minimum. This case practically therefore re- 1 
duces to the former, if we first multiply each equation by the 
square root of the corresponding weight. I 

5. 
Returning to the case of equal weights, let us determine 

the probable errors of any linear function, as f x  +gy + Az . . . 
of the obtained values of x, y, z, ... . Let the solution of the 
equations (8) be written t.hus 

o = m + ( a a ) ( a m ) + ( a P ) ( ~ m ) + ( a ~ ) ( c m )  ..., (10) 
0 = y + ( a B ) ( a m ) + ( P i 9 ) ( b m ) i ( P y ) ( c m ) . . . ,  
0 = z + ( a y ) ( a m ) + ( B y ) ( b m ) + ( ~ y ) ( c m ) . . . ,  

kc. 
Then, if 

0 = A+(aa)f +(aP)g+(ay)R ... , (11) 
I 

0 = B+(aP)f +(BP)g+(Py)h ... , 
0 = c+(ar ) f  +(BY)Y+(YY)A... , 

hc., 
i t  follows that, 

0 = f+(aa)A+(ab)B+(nc)C ... , (I2) 
0 = g+(a6)A+(lb)B+(bc)C ... , 
o = A+(ac)A+(bc)B+(cc)C ... , 

hc. ; 
I 
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and thus 
f x + g y + z h  ... = A ( a m )  +B(Lm)+C(cm)  ... , 

= (Aal+Bd,+Ccl ...) ml+(Aa ,+B4+Cc,  ...) m2+ ... . 
Let  S be the sum of the sqnares of these coefficients of %, 

mP, . . ., then S = 

which by ( 1  1 )  and (12)  gives finally 

s = (aa)f" ( a S ) f g  -t ( a r ) f l  (13) 
+ ( a B ) f 9  +(BP)g" ((Pr>gh . . . 
+ ( a ~ ) f h  + (B Y ) Y ~  + (Y Y )  ha --. ; 

when therefore we require the probable error of a function 
of x y z  ... , it is necessary in solving the equations ( 8 )  to leave 
the absolute terms symbolical. Thus we have the required 
numerical quantities (aa),  (ab ) ,  . . . . 

The probable error offa +gy + lz . . . might be taken as r 48 
where c is the probable error of one of the equally well ob- 
served quantities m. The value of c is generally only to be 
determined by consideration of the residual errors of the 
equations: let u be the sum of the squares of these residual 
errors, i the number of the equations, j that of the quantities 
x, y, z, . . . , then the probable error of fz +gy + hz . . . is 

su 4 k 0.674 (-) 
2 -3 

For the necessity of dividing by d - j  rather than i we must 
refer to treatises on least squares, for instance, Gauss, ZYiemia 
Cimrbinatioleia, Q 38, or Chauvenet's Spierical and Practical 
Aetrorrmy, Vol. 11, pages 5 1 9-5 2 1. 

A check on the calculated sum u is afforded by the easily 
verified equation 

Suppose the case of only two unknown quantities, then 
( 1  0 )  becomes 

o = x +  ("') (am)  - (a  6) (8 m) , 
(a2) ((6) - (a b)a 

- (4 (am)  + (4 (dm) . 
O = "  (a'2)(L2)-(ab)d 
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and the probable error of f a + y y  is, 

i f f  +g = 1, the probable error is a minimum, when 

f {(ab)+(@)) -Y {(aS)+(ab)I = 0. 

The following numerical examples will serve to elucidate 
the preceding theory. The annexed table contains in the first, 
third, fifth, and seventh columns, forty independent micro- 
meter measuremente of equal weight, made for the pnrpoee 
of determining the error of poeition of a certain division line I 
on a standard scale. I 

The arithmetic mean of the messured quantities gives 
a = 3.93 ; and in the alternate columns are placed the errors, 
or differences between the individual measures and their 
mean. The sum of the squares of these errors is 32.635, 
hence the probable error of a single determination is 

Now if me arrange the errors in order of magnitude, we 
find that those two which occupy the centre position and so 
represent the probable error are + 0.66 and - 0.66. Again, 
as we have seen a t  page 55, the number of errors out of 40 



which should be less than half the probable error is 11, 
the actual number is 12. The number whioh according to 
theory should be under twice the probable error is 33, the 
actual number is 32. Finally, two errors should exceed three 
times the probable error, the actual number is 1. 

The probable error of the determined value of x is 

f 0.62 : &O = k 0.097. 

The unit of length in these measures is the millionth of a 

yard. 
Take now a case of two unknown quantities. The observed 

differences of length between the platinum metre of the Royal 
Society and a steel metre of the Ordnance Survey at  certain 
temperatures are given in the accompanying table (Corn- 
prisons of Strmdarda, page 1 7 1) :- 

Let P: be the excess of length of the platinum metre at  62", 
and y its excess at  32", above the steel metre at  the same 
temperatures, then a t  the temperature t the excess is 

and this is to be equated to the observed difference. The first 
tliree equations for instance are 

D m .  

5.76 
6 69 
5-00 
5.90 
6.39 
5.77 
3.30 

' _ 

and so on. I n  forming the sums of squares and products 

(a a), (a b), (4 6 ) ,  (a m), (6 m), 

I h p .  

0 

65.16 
65.20 
65.45 
65.51 
64.57 
64.77 
64.88 

D m .  
-------- 

41.59 
38.53 
41.08 
39.13 
41.80 
38.65 
41.26 

DIFF. 

36.57 
38.54 
39.47 
41.10 
40-10 

.- 

T m .  

36.12 
36.06 
36.08 
36.23 
36.57 
35.40 
35.94 

T m .  

35.22 
37.33 
37.49 
37.60 
37.79 

D m .  

6 47 
7.23 
4.17 
6.32 
7.31 

38.07 
3949 

TPYP. 

0 

63.76 
63.93 
64.21 
63.90 
64.08 
38.36 
33.35 
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it is to be remarked that in this case, since in each equation 
a + b  = 1, we have 

(2) + (a  8 )  = (a) and (ah) + (be )  = (6)  ; 
thus the final equations corresponding to ( 8 )  are found to be 

The solution, leaving the absolute terms symbolical, gives 
x+.068950  (am)- -004685  (bm) = 0 ,  
y - , 0 0 4 6 8 5  ( a m )  + -099522 (bm)  = 0 .  

Restoring the numerical values of (am) ,  (bm),  we have 
x = 9.08,  y = 45.26, and on substituting these in the 26 
equations, the residual errors are 

- 0.49 - 0.41 - 0.48 - 1.69 - 0.85 + 0.29 
-1 .47 -0.03 - 1 . 3 0  +z .41  - 0 8 3  
- 0.08 + 2.31 + -47 + 1.83 - 0.75 - 2.59 
- 1.05 + 0.49 - 0.74 - 0.74 + 4.81 - 1.81 

- 0.48 + 1.03 

the sum of the squares of which is 66.03,  so that the probable 
error of a single comparison is 

and the probable error of x and y are 
x . . . k 1.1 2  ( - 0 6 9 0 ) )  = k 0.29,  

y .. . k 1.12 ( - 0 9 9 5 ) )  = k 0.35.  

W e  may calculate by ( 1  4 )  the probable error of the differ- 
ence of length corresponding to any temperature r, and i t  is 
easy to prove that this is a minimum when r is the mean of 
all the observed temperatures. 

A a c e  of frequent occurrence is that in which we have 
the observed values of a number of quantities u, , u, , . . . , gi, 

which, though independently observed, have yet necessary 
relations amongst themselves expressed by j ( < i )  linear equa- 
tions. Let U,, U,, . . . , Ui be the observed values with weights 
lo,, w,, . . . ; then if x , ,  x,, . . . , x, are the errors of U,, U,, .. 
U,, they are connected by j equations of the form 



LEAST SQUARES. 63 

XOW the probability of the concurrence of this system of 
errors may be thus expressed according to (5 ) ,  

p = ~ ~ - w ~ x ~ ' - w ~ x ~ ~ - q r ~ - .  .. 
being the product of the separate independent probabilities. 
Therefore, amongst the indefinitely numerous systems of errors 
which satisfy the j equations of condition, we must select that 
which corresponds to the maximum value of P. But P is a 
maximum when 

w1x12+wqx~+'149x32+... (16) 

is a minimum. This, i t  is to be observed, corresponds with 

(9). Thus, x,, x2, ... are to be determined so as to make 
(16) n minimum while satisfying the conditions (15): a 
definite problem in the differential calculus. 

Suppose, for instance, that the observed values of the angles 
A, B, C of a triangle have the weights u, v ,  w. Let x, y, z be 
the errors of the observed values, then since the true sum of 
the angles is known, we have a connection established be- 
tween x, y, z : viz. if t be the error of the sum of the observed 
angles 

x + y + z  = c ;  

then x, y, z must be determined so that 
uxB + vye + wz2 = a minimum. 

Differentiating these two equations, and comparing the 
coe5cients of dx, dy, dz, i t  appears that 

U 
Therefore x = 1 1  1 )  -+-+-& 

U ti 

y = 1  1 1 '  - + - + -  u v w  
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Thus, A, By C being the true angles, and el, e,, e, the 
actual errors of the observed angles, the adopted values are 

-+y+; 
U 

The actual error of any function as a B +pa + y & of the 
adopted angles ie thns 

(a-W'K)el +(B-dK) e,+(y- w'K) ea, 
where 

1 1 1 1  -- + y + ~  a 8 r  d-u K=-+91-+ lo .  21 

Now the squares of the moduli for the law of facility of 
error in the observed angles, that is for el, e2, e, , are the re- 
ciprocals of 21, v, w, so that the square of the modulus for 
errors in a(B[+PB+y& is 

which may be put in tho form 

and the probable error is the square root of this multiplied 
by p = -477. If, for instance, the side c be given, the probable 
error of the calculated side a is 

2tcot2C+v (cot A+cot C)2+w cot2 A t 
*Pa { uv+vw+wr  1 .  

If the three angles be equally well observed, each having 
the probable error t, that of a is 

+ r (i~)*(cot~A + cot A cot C+ c o t 2 ~ ) t a .  - (17) 

I n  the application of .such a formula as this, i t  is necessary 
to bear in mind that i t  is based distinctly on the hypothesis 
of the errors following the established law of facility of error 
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in (2). It could not be derived otherwise-if, for instance, 
the observations were liable to unknown constant error. It is 
safer therefore, if there be any doubt on this point, to obtain c 
from the differences between the individual observations and 
B, d, &, than from the differences with the respective meane. 
Suppose the probable errors of the observed angles eetimated 
in the last-mentioned manner (namely, from the agreement of 
the observations at  eaeh station, without any reference to the 
s m  of the angles) to be each + 0"-4 ; then the probable 
error of their sum is k 0".4 4 3  = 0".7. Now, as we have 
seen (page 65), in a system of errors in which 0.7 is the 
probable error, only about one error in 143 exceeds 

4 x 0".7 = 2"-8; 

therefore, i t  is very improbable that the sum of such angles 
should have an error of f . 8 .  Still it might occur. But if 
the error were, say 4", we should be compelled to admit the 
existence of a constant error, and in this case the formula 
referred to would be deceptive. 

I n  extensive triangulatione it is found that the errors in 
the s u m  of the observed angles of triangles are somewhat 
larger in the long run than what would be expected from the 
agreement of the observatione of angles among themselves. 
Hence it is usual to estimate the precision of observed angles 
by reference to these errors of triangle sums. On this sub- 
ject much valuable matter will be found in the second volume 
of the Accouat of tAe &eat TrigonontetricaZ Swmy q,f fi~dia, by 
General Walker, C.B., R.E., Surveyor-General of India. 



CHAPTER IV. 

THEORY OF THE FIGURE OF THE EARTH. 

IN the third book of Newton's Pridpia (1 687), propmitiom 
18, 19, 20,-will be found the first theoretical iuvestigation of 
the figure of the earth based on the newly established doctrine 
of gravitation, Newton determined the ratio of the axes of the 
earth on the assumption that an ellipsoid of revolution is a 
form of equilibrium of a homogeneous fluid mass rotating 
with uniform angular velocity : a proposition fully established 
some years after by Maclaurin. 

I n  1743 was published Clairaut's celebrated work on the 
figure of the earth. I n  a very valuable Histoly of the blatk- 
matical Theoriea of Attraction and lire F i g w e  o f  the Earth, by 
'I. Todhunter, M.A., F.R.S., 1873, at  page 229, vol. I, the 
author remarks concerning Clairaut, ' I n  the Figure of the 
Earth no other person has accomplished so much as Clairaut; 
and the subject remains at  present substantially ss he left it, 
though the form is different. The splendid analysis which 
Laplace supplied, adorned but did not really alter the theory 
which started from the creative hands of Clairaut.' We shall 
in this chapter give some of Clairaut's results, basing them on 
the very beautiful theorem due to Maclaurin and Laplace- 
' The potentials of two confocal ellipeoids a t  any point external 
to both are as their masses.' 

For an a c c o ~ t  of the inveetigations of the many eminent 
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mathematicians who have dealt with the theory of the figure 
of the earth, we must refer to  Mr. Tdhunter's interesting 
volumes. 

Of the various methods of proof that have been given of 
Laplace's Theorem, one of the most elegant is that of Rod- 
rigues, to be found in Cmedp. szlr P&oh Polyted., tome iii. 
pp. 361-385 1. It is based upon the following lemma, which 
is easily proved : viz. if M be any point, P a point on a closed 
surfice, P Q  the normal drawn outward at  P, dS the element 
of surface a t  this point, then the integral 

taken over the whole surface, is equal to 0 or - 4 w  according 
as M is exterior to or interior to the surfsce. 

Let f, g, A be the coordinates of any point, a, 6, c the semi- 
axes of an ellipsoid, i a ,  i 6, i c  increments of a, b, c, such that 
a i a =  686 = c ic  = a constant, my = f i t ;  then i t  is clear 
that by these variations we pass from the original ellipsoid 
to an adjacent confocal ellipsoid. The potential of the 
ellipsoid is 

B ' 
where 

Re = (3-f)a+(y-g)'+(~-A)'. 
Transform the above integral by putting 

then the element of mass becomes a 6crs sin tJ d +  dB dr, and 
p = ["l%l #sintJi+dBdr @ 

abc 
The variation of the function P- a 6c in passing from the 

ellipsoid abc t o  the adjacent confocal ellipsoid is 

See .lea Todhnnter, Altmclione, &a, ii. 143 ; and the m l y  Journal of 
M c J U ( e e ,  voL ii. pp. 333-7. 

B 2 
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B 
Now 8 s  = r cos tJ8a = - aa, and so on ; thue a 

so that 

or, putting N for the quantity in brackets, 

P a(-)=-- 
abc 

" $ IJ sin 0 d+ dd dr, (1) 
2 

the integration extending throughout the ellipsoid. Consider 
now the shell which is bounded by the ellipsoidal surface 
whose semiaxes are ra, r6, rc, and that whose semiaxes are 
( T  + dr) 0, (r + dr) by (T + dr) C. Let c be the thickness of this 
shell, then A, p, v being the direction cosines of the normal a t  
zyz on the inner shell, 

A s  py vz . ( 2 + B + F ) c = r d r :  

3 y2 z a +  I(: 
but A(- +-  +-) = - Y  andsoforp,  v ;  hence 

a4 h4 c4 . $ 

Let dS be an element of one of the surfaces of the shell, 
then the element of volume is cdS, by which we may replace 1 
a l c $ sin tJ d+ $9 in the triple integral (I). Thus we have 

- - - . -  1 cm+dSrdry 
abc EL 

where 9 is the angle a t  zyz between the n o d  drawn out- I 
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wards there and the straight line drsmn from thence to f g 1. 
Consequently 

the integration with respect to 8 extending over the whole 
surface of the ellipsoid whose semiaxee are ra, rb,  TC. 

Therefore, by the Lemma a t  the commencement of this in- 
vestigation, if the point fg i be outside t.he ellipsoid, 7 : a bc 

- 
is constant ; that is, if M be the maas of the ellipsoid 7: M 
is constant; that is, i t  is independent of the lengths of abc, 
depending only on the eccentricity of the ellipsoid. I n  other 
words, the potentials'of confocal ellipsoids a t  an external point 
are as their masses. 

2. 
An expression for the potential of an ellipsoid at  an in- 

ternal point may be derived from the last-written equation. 
When f g i  is internal, we have by virtue of the Lemma 

where the integration is to be taken for all the shells outside 
the particle, viz. from r = I' to  r = 1, where 

so that 

The right hand member of this equation is the increment 
of the function 7: abc in passing from the ellipsoid abc to 
the confocal ellipsoid a + 8a, b + 8 b, c + 8c, where 

a8a=b8b  = c 8 c =  4 6 t .  
We may now nee the ordinary d instead of 8, and putting 

a2 = a2 + t, . b2 = p2 + t ,  ce = ye + t, 
we have 
d P 
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T I 
Integrate from t  = 0 to t  = w ,  since - vanishes when t is M 

infinite, then we have 

where Q = ((a2 + t )  (B9 + t )  (y2 + t ) ]J.  This expresses the 
potential of the ellipsoid whose semiaxes are spy, a t  an 
internal point f g  A. 

We may adapt the result just arrived at, to the case of a 
very nearly spherical ellipsoid in the following manner. Let 
the semiaxes squared be k2 + cl, k2 + c2, P + c3, where el, c,, g 
are very small quantities whose squares are to be neglected, 
a n d c , + ~ ~ + ~ ~ =  0. P u t k a + t = u , a n d  

Q 2  = (u + €1) (21 + €2) (26 + g), 
then Q = u4; and M being the mass of the ellipsoid 

r k 8 =  $ M .  
Thus, at  an internal point fgi, 

the integral being taken from u = k2 to 21 = co : thus 

where r2 = f +g2 +he. The result of the integration is 

which is the potential required. 
From this we may obtain the potential of an ellipsoid a t  an 

external point. When the internal point fgh arrives at, or 
is on the surface, 

f 2  + r + - = I ;  9 d 
P+el k +c2 P + r ,  

whence elf a + c2ge + c3 i2 . 
r2 = k 2  + - 

k2 3 
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Thus, for a point on the surface, 
rl f 2 + % g 2 + ~ k g  

T' 1 (4)  
I& .tmc t E p ~ 0 3  to which this refers be called the ellipsoid 

E, and let the pointfgh on ite surface be called R. Let there 
be another ellipsoid E' confocal with E, and interior to it, its 
mase M', and squared semiaxes kI2 + r , ,  k,¶ + c2,  k12 + 6,. Let 
Y' be the potential at  R of E', then by Laplace's Theorem 

7': dl'= P : M .  
Therefore, in the preceding equation we may substitute I-' 

and M' for P and M, or in other words, that equation ex- 
presses the potential of an ellipsoid at an external point. 

If a bc be the semiaxes of any ellipsoid, and 
el2 = P-$, e t  = $-a2, e: = a2-P,  

the potential at  an external point is expressed by the series 

M -- (P,'e,P e,2 ( e : - e , 2 ) + r e s 2  e,2 (e2-e,2) 
42 r7 

+&'"e:e: (el2-e,2)+ Pe:  e: e:), 
and so on ; where c, r, are what Legendre's coefficient 
of the order i becomes when the direction cosines of the line r 
are substituted severally for the variable involved in the 
expression for P i ,  and P is a symmetrical function of the 
direction cosines. The values of P,, P,, P4, P ,  are 

PI = CC, 

PhibmphW Magazine, December, 1877. 
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We see from the lam of this series for P that for an 
external point, however near it may be to the ellipsoid, if the 
ellipsoid be very nearly a sphere, eo that small quantities of 

1 
the second order (e4) may be neglected, then P is expressed by 
two terms of this series. Supposing the ~emiaxee squared 
to be as before, k2+el, k2+c2 ,  k g + € , ,  where ~ , + c , + r ,  = 0, 
then we easily find 

e2-%a = - 3 5 ,  e 2 - e l s  = - 3 e 2 ,  els-epB = - 3 e 3 ;  

also 

substitnting these values in the second term of the series, we 
get again the expression (4). 

We shall now take the case of an oblate spheroid l, and 
obtain an expression for the potential of a spheroidal shell at 
an external and at  an internal point. Let the semiaxes of an 
ellipse be c (1 + $ e) and e  (1 - 3 e), 7 ,0  the polar coordinates of 
a point in this ellipse, 0 being the angle between r and the 
minor semiaxis, then if we neglect the square of e, 

rs sinz 0 rz cos2 0 
r(l++) + ~ ( l - * e ) =  l 

is the equation of the ellipse. Put cog 0 = p, and the equation I 

may be written in the form 

This ellipse, by rotation round its minor axis, generates a 
spheroid whose mass to unit density is + ne3 ,  so that c is the 
mean radius of the surface, and 6, which is called the ellipticity, 
is the ratio of the difference of the semiaxes to the mean 

The word 'spheroid' is nut used in thia book in any other sense than M 

meening an ellipeoid of revolution. 
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radius of the surface. Tn order to express the potential of 
this apheroid me must in the formulae for the ellipsoid put 

~ P ' Y  
P )O cCL, C, = 3ecS = e2, eg =-ge@;  

thus we get for an internal point the potential 

and for an external point 

Next take the shell, whose interior s11rfk.x is a spheroid, 
whose elements are c, e, and ita exterior surface the spheroid 
whose elemente are c+dc  and e+de. Let e be a function 
of c, so that 

then the potentials of the shell st an internal and an external 
point are respectively 

dc, and 3 dc, 
d c  dc 

the density being uniiy ; if the density of the shell be p, the 
potentials are, 

d"0 a t  an external point, p - dc ; dc 
dl7 at an internal point, p 2 dc. 
dc 

Now consider a spheroid in which the density is not uni- 
form, but varies in such a manner that the surfaces of constant 
density are concentric and coaxal spheroids, the external 
surface being one of them. The ellipticity of the surfaces as 
well as the density is a function of the distance from the 
centre. Suppose that r = c ( 1 + e (9 -4)) is the equation of 
the generating curve of the surface of density p, then c being 
the independent variable, e and p are functions of c. Thus 
we may in other words suppose the spheroid formed of homo- 
geneous spheroidal shells of which the ellipticity and density 
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are functions of c. The external surface me shall particularise 
by the accented letters c', e'. Take a point P within the 
body, let i t  be situated on the surface whose elements are g, e,, 

1 
its polar coordinates r aud p. It is required to express the 
potential of the whole mass a t  P. 

I n  the preceding section we obtained an expression for the 1 
whether a t  an outside or inside point, of a shell such I 

as the spheroid we are & is d If w in- 
tegrate the expression for the potential of a shell a t  an 
outside point we get 

taken between the limits 0 and c, for the potential at  P of 
the assemblage of shells which do not enclose P. Again, 
integrating from c, to c' the expression for the potential of a 
shell a t  an internal point, we get for the potential at  P of the 
assemblage of shells which enclose P 

Sp? dc;  
C l  

thus the potential of the spheroid ie 

I f  we now replace r by its value c, ( 1 + e, (4 -$)I, me get 

7= ~ ~ p c z d c + 4 a ~ p c d c + 4 r ( t - n ~ ,  C,-o ((6) 
c/ 

where 

The first two integrals in (6) express the potential of a 
sphere whose density is a function of the distance from the 
centre, a t  an internal p i n t :  the quantity U is of the order 
of magnitude of e. 
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It is proved in treatises on hydrostatics that if p be the 
pressure, p the density, and X, Z the componeub 4 the 
force acting a t  the point oyz of a fluid mass 

d p  = p (Xdx + Ydy + Zdz), 
and that  for equilibrium i t  is necessary that the right hand 
member of this equation be a perfect differential, and that a t  
the free surface 

Xdx+ Ydy+Zdz = 0 ;  

this last condition requires the resultant force a t  each p i n t  of 
the surface to be normal to the surface. In  a homogeneous 
fluid this is obviously the differential equation of all surfaced 
of equal pressure. If the fluid he heterogeneous, then i t  is to 
lx remarked that if X, Y, Z be the components of the attrac- 
tion of a mass whose potential is P, 

d P  X=- d P  d P .  
d x ,  Y=-, Z = -  

d.Y dz ' 
so that in this case Xdx  + Ydy + Z d z  is a complete differen- 
tial. And in the case of a fluid rotating, say round the axis 
of z, with uniform velocity, the corresponding part of 

X d o +  Ydy+Zdz 
is easily seen to he a complete differential. Therefore, for the 
forces with which we are concerned, namely, attraction of 
gravitation and the so-called centrifugal force 

X d x +  Ydy+Zdz = d 8 ,  
ahere @ is some function of xyz, and i t  is necessary for 
equilibrium that d;o = p d o  be a complete differential, that 
is, p must be a function of O, so also p becomes a function of 
0, so that d @  = 0 is the differential equation of surfaces of 
equal pressure and equal density. 
' Although, since the earth i s  revolving shout its axis, all 

problems relating to the relative equilibrium of the earth 
itself and the bodies on its surface are really dynamical 
problems, yet they may be treated statically by intro- 
ducing in addition to the attraction the fictitious force 
called centrifugal force. Let the earth be referred to rectan- 
gular coordinates, the axis of z being that of revolution. 
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At  the point xyz within the maas let P be the potential of 
the mass, then the components of the force there are 

I 

o being the angular velocity of rotation. Then according to 
what precedes, at  every surface of equal pressure and density ~ 
and integrating 

where Q is constant for a particular. surface, but varies from 
one surface to another. This equation then is that of a sur- 
face of equal pressure and density; generally termed a level- 
surface. At every point of a level-surface the resultant force 
is perpeildicular to the surface, and its amount is evidently 

9 where dn is the element of the n o d  
dn 

Let us now enquire whether i t  is possible for a homo- 
geneous fluid mass of the form of an ellipsoid, rotating round 
one of its axes, to be in relative equilibrium. If the semi- 
axes be abc, and fg8 the coordinates of any particle of the 
mass, then the potential a t  this point is given by equation 
(2). If we substitute this value of P i n  the equation of a level- 
surface, and then divide by $ My where 31 is the mass of the 
ellipsoid, we get, supposing the axis c to be that of revolution, 

where Q2 = (a2 + t )  (62 + t )  (c2 + t), and C' is a constant. This 
equation must hold at  the external surface which is that of 
zero pressure : but at  this surface 
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and comparing coefficients off g4, P, we have 
d t  - 

2 02 d t  1.1 
i % - / ~ ( 6 s + t ) = F ~  

d t  P 

which are equivalent to two equations ; and we have to ascer- 
tain whether the results to which they point are possible. 
Subtract the second equation from the first and we get 

a* ) I /  (a9-") d t  = (b2-=*) ; 
Q (a2 + t )  (b2  t t )  

then eliminating p by means of the third equation, the 
result is 

ax b2 d t  

thia condition may be satisfied either by a = 6, in which case 
the ellipsoid is one of revolution round c ; or by making the 
quantity within the bracket8 vanish, that is 

but there can be no negative elements in &is integral unless 
a b  

C < (a2 + b2)* ' 
Imagine a triangle having two sides a, b, includiog a right 

angle, then the perpendicular from the right angle to the 
hypothenuse is ab (aa+b2)-*. From this i t  appears that c 
must be less than either Q or a if the last-written integral is 
to vanish. If, however, c be very small the integral becomes 
negative. Therefore there i s  some valne of c which will 
mtisfy the equation. For a discussion of this very interesting 
problem see a paper in the Proceedings of the Royal Society, 
No. 123, 1870, by Mr. Todhunter. 

That the valne of cu ie real will appear Bom the fb t  and 
third equations, which give 

2 r 2  @-@J t d t  
%@=7 Q ( a 4 + t ) ( c s + t ) '  

which ie essentially positive. 
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This remarkable fact, that a homogeneous fluid ellipsoid of 
three unequal axes, revolving about its smallest axis, can be 
in a state of relative equilibrium, was discovered by Jacobi 

1 
in 1834. 

I 

In  the case in which a = b and the ellipsoid becomes an 
oblate spheroid, there is but one equation of condition, namely, 
that which connects the velocity of rotation with the ratio of 
the axes. Let the ares be c and e (1 + ee)i  ; then if p be the 
density of the fluid mass, the last equation written down 
becomes 

m t d t  
Q ( a a + t ) ( c a + t ) '  

Now transform this integral by putting ce + t  = eg c4 cota 8, 
then Q = t3  c3 cot tJ coseca 8, and 

dt  - - 2dO. 
CC ' Q - - -  

Suppose E to take consecutively all values from 0 to w ; 
call the right-hand member of the last equation E; then as E 

increases from zero, E increases from zero until, for a certain 
value of c derived from the equation d E  = 0, or 

B becomes a maximum. As E increases from this value, 
which is about 2.5, to infinity, E gradually diminishes to 
zero ; there is therefore a maximum limit to o, and when the 
angular velocity is less than this limit, there are always two 
spheroids which satisfy the conditions of equilibrium : in one 
c is greater, and in the other less than 2.5. This fact mas 
first indicated by Thomas Simpson, and subsequently proved 
by DYAlembert. It is to be remarked, however, that the same 
mass of fluid cannot take indifferently one or other of these 
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without an  alteration in its moment of momentum. If the 
moment of momentum and the mass be given, there is but 
one possible form of equilibrium. 

We may now shew that the earth cannot be or have been 
a homogeneom h i d .  I f  p be the mean density of the earth, 
ita mass is $ rpa4c, where a  is the radius of the equator, and 
this mass divided by ac may be taken as the mean amount of 
the attraction at  the surface; then, if m be the ratio of centri- 
fugal force a t  the equator to gravity, 

Let I be the length of the seconds pendulum, then the 
acceleration due to gravity is ?r2 Z : at  the equator, I = 39.0 17 
inches ; at the pole, I = 39.2 17; the mean of these is the length 
of the seconds pendulum in the latitude of 45'. Also, the 
acceleration due to centrifugal force is, if t be the number of 
mean solar seconds corresponding to one revolution of the 
earth, 4 a G .  

am2 = - 
t" 

hence on substituting the values t = 86164 and a = 20926000 
r. feet, l =  39.117 inches, 

Now when re  is very small, as in the case we are con- 
sidering, 

w4 3 + ce -- -- 3 4 kn-lE--- -c2;  
2rp c3 ca - 15 

and this we have seen to be equal to 3 m, hence 

f cB = pm; 

jmd the ratio of the axes being 1 : 1 + 4 cg, is 231.3 : 232.3, 
which differs materially from what we know to be the actual 
ratio. 

9. 
Let us now consider the case of a revolving fluid spheroid 

which is not of uniform density. Without assuming any law 
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for the density, let it be so fsr limited as that the surfaces of 
e q d  density shall be spheroids concentric and coaxal with 
the surface, nnd then determine the conditions which make 
equilibrium possible. In  this case the surfaces of equal 
density are also d i e a s  of equal pressure. The potential at 
any point of such a maes is given in (6), and this haa to be 
substituted in (7), which may be conveniently put in .the 
form 

oa 
O =  P+ --+(I-pa) = 7 + $ r s w e + a r 2 ~ o " ( ~ - r 2 ) .  (8) 2 

To conform with previous notation, 7 is to be here replaced 
by c,, since small quantities of the second order are excluded. 
The result of the substitution is, if 4 xu+ a $4 oe = 4, 

Now this is to  be constant for the spheroidal surface de- 
fined by c, and e,, but in order that i t  may be eo, 4 mud 
vanish : hence, restoring the value of U from (6), rf= = r p 2 d c + 4 n  C,  @ [ p e d c + $ c : u a  (9) 

and 

This very important equation, expressing the condition of 
equilibrium, was first given by Clairaut l. He transforms it 
thus: omitting the subscripts which specified the particular 
d a c e  at which the potential was taken,-multiply (10) by 
cS;  differentiate and divide by c 4 ;  differentiate again,  and 
then multiplying by 19, the result may be written 

where + (c )  is written for p  E' d c .  
0 

6ee TLemJc dc la&wc ds h Tsrrs, b, pp. a73, 176. 
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10. 
The differential equation just arrived a t  can always be 

integmbd, at  least by series, when p is given in terms of c ;  
and the two arbitrary conatante will enable us to make the 
value of e satisfy the equation from which i t  is derived. 
When therefore p is given in terms of c it is always possible 
to find the ellipticity of every surface of equal density and 
pressure eo as to aatisfy the condition of equilibrium. Thus 
we have a possible constitution for the earth. Without how- - 
ever aseigning any particular law of density, Clairaut made a 
very important deduction from the preceding ; i t  may be put 
thus: the mass M of the spheroid is = 4n@(c'), and the 
ratio of centrifugal force a t  the equator to gravity being 
m =  C ' ~ U ~ : M ,  

dPuX m --- 
a n - 2d @ (c'). 

I n  (10) make c, = d ; the result is 
m $.[$ ((8) dc- (d- -) cg (d)  = 0 ; 
2 (12) 

then (5) gives for the potential a t  any point extarnal to the 
earth 

If we differentiate this with respect to r, the differential 
coefficient taken with a negative mgn gives the attraction in 
the direction of the earth's centre, which may be taken for 
the component in the direation of the normal se we are 
neglecting small quantities of the second order. In order to 
get the whole force of gravity which includes centrifugal 
force we must add to this the vertical component of the latter. 
Or, more directly, the value of g is 

Performing the differentiation, and putting for 7 its value 
at the muface, the result is , 
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Let G be the value of gravity at  the equator, where p = 0 ; 
then if t$ be the latitude, 

g = G (1 +(tm-d)sina+). (1 4) 
Hence, the formula known as Clairaut's Theorem: viz. if 

G, G be the values of gravity at  the equator and a t  the pole 
respectively, then 

G'- G 
G 

= im-e ' .  

I n  his demonstration, Claimut makes no assumption of 
original fluidity ; he supposes the strata to be concentric and 
coaxal spheroidal shells, the density varying from stratum to 
stratum in any manner whatever: i t  is assumed however that 
the superficial stratum has the same form aa if i t  were fluid, 
and in relative equilibrium when rotating with uniform 
angular velocity. Professor Stokes in his demonstration of 
Clairaut's Theorem in two papers published in 1849, showed 
that if the surface be a spheroid of equilibrium of small e l l ip  
ticity, Clairaut's Theorem follows independently of the adop- 
tion of the hypothesis of original fluidity or even of that of 
any internal arrangement in nearly spherical strata of uniform 
density. On this point i t  is needful to bear in mind that 
without altering gravity a t  any point on the surface of the 
earth, the internal arrangement of density may be altered in 
an infinity of ways : for since the attraction of a solid homo- 
geneous sphere is at  any external point equal to that of any 
concentric spherical shell of the same mass as the sphere- 
being homogeneous and not inclosing the point referred to- 
it is clear that one might leave a large cavity a t  any part of 
the earth's mass by distributing the matter in concentric shells 
outside it. The fact that the variations of gravity on the 
earth's surface, aa indicated by the pendulum, are in accordance 
with the law shown in Clailaut's Theorem is therefore no 
evidence of the original fluidity of the earth. 

11. 
I n  order to determine the law of ellipticity of the surfaces 

of equal density, i t  is necessary to assume some law con- 

Cambridge and Dublin Mathematical Journal, Vol. IV, page 194. Caa- 
bridge Philosophical Tratuactionu, Vol. VIII, page 672. 
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necting p with c. The law assumed by Laphe ,  and not 
since replaced by any better hypothesis is, that the com- 
pressibility of the matter of which the earth consist% is wch 
that the increase of the square of the density is proportional 
to the increase of precrsure. This law involves a t  least no- 
thing a t  variance with our experimental knowledge of the 
compressibility of matter. Expressed symbolically, i t  is 

d p  = kpdp, 

Now, by (91, if we omit the small term in sP and replace k 
by 471 &¶--an arbitrary constant, the equation becomes 

Multiply this by c and differentiate twice, thus 

of which the integral is 
C 

pc =  sin(^ +,). 
Now, in order that the density at  the centre may not be 
infinite, it is necessary that g = 0 : this gives for the law of 
density 

R c 
p = ;sinz* 

W e  may obtain the mean density po of the earth thus : the 
m w  of the spheroid is 

4n$(d') = $.npec's; 
3 ... Po = ?+(c'). 

But  

" C = - c i k  cos; + 11 J cos-dc, 
o k  

C 
=4k(ksinz-ccos ; 

Rk k . c '  :. p,= 3- - sm- - 
cQ{d k 

(1 2 
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If 4 be the surface density, 

Now make the Following snbstitutione: let the ratio of 
the surface density to the mean density be .n, that is p' = ~ p , ,  
and put d = kd, then we have 

With Laplace's law of density we can now solve equation 
(1 1). -Differentiste the expression for p, and the result ia 

and substituting this in the equation referred to, it may 
without difficulty be transformed to this- 

of which the integral1 is 

Hew B must be zero, or the ellipticity at  the centre would 
be infinite, as may be aeen on expanding e in powera of c. 
We may put this result in the form 

which gives for any stratum 

At the surfwe this becomes 
3 C  d =  -(%-I), 
dB 

See Boole'u Wwmtial EquaDionr, yd edition, psge 415. 
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and at the centre where c = 0 

L e2 e , = - . .  
15 1-n 

So far, the law of ellipticity of the strata is determined, but 
not the ellipticity of the surfsce absolutely. That may be 
amved a t  in terms of n by the following process. We have 
seen that " d 

68 '  (k -  f )  @(d) =l pb(ec6)dc; 

call this +, (c') : then remembering that 3 rc @ (c') = p' c '~,  

Integrate by parts, taking into account (IS), thus 
d 

a(C) =p'kd5 + $ J c'Je@(c)dc, 
0 

substitute the value of G@(c) obtained above, (I  6), and make 
use of the equations c' = kt?, c'p' = h sin 0, then we find 

but kd2 = 3(n-1) C, as we bave seen, therefore 

therefore 

substitute this in (17), and we find 

Thus, the ellipticity of the surface is expressed in terms of 
the ratio of the mean denaity to the surface density. 

13. 
Supposing the earth to bave become solidified in the fluid 

form of equilibrium with the law of density we have been 
considering, there is a test of the preceding theory to be found 
in the phenomenon of the precession of the equinoxes ; astro- 
nomical observations giving a very exact value of (C-A)  : C 



86 THEORY OF THE FIGURE OF THE EARTH. 

where A and C are the principal moments of inertia of the 
mass. The principal moments of inertia of a homogeneous 
spheroid whose density is p and semiaxes c (I - 3 e), c (1 + 4 e) 

1 
are 

A'= +dLM(l-i~), 
C'= +c+ M(l+%e) .  

So that for the spheroid representing the earth, 
8n C - A  = - 
15 h (4 9 

It is unnecessary to retain quantities of the order e in C. 
Now 

8c8 C C 
r p ~ d c = ~ 4 1  o ps in-d( - ) ,  k k  

but - - 

8n d6 p' C - A  = +l (d) = $ (d- :) .-, 3 n 

6-- 
C - A  - .. -- 2 

C 1 -n' 
1 - 6 -  

8a 
which is another remarkably simple result following from 
Laplace's law of density, and enables us from the observed 
constant of precession to deduce a value of the earth's ellip- 
ticity. This method was first pointed out by d'Alembert in 
his work, ReciercAee wr la PrJcession &s Epuinoxed. ~ 

I n  the following table we give the numerical results of the 
preceding theory on six different suppositions as to the mag- 
nitude of the ratio of the mean density to the superficial 
density of tho earth. The second column gives the value of 
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the subsidiary angle 9 in arc, which is expressed in degrees in 
the next column; the fourth column gives the ellipticity of 
the surface ; the next that of the strata at  the earth's centre ; 
the last column gives the cornputsd constant of p&on :- 

The actual value of C-A : C determined from astronomical 
observations (Annnlea & I'obaematoire Imphial de Parb, tome 
V. 1859, page 324) is between and .&,, which corre- 
sponds with the value of n = A. As we shall see in the 
sequel the value of n = 4 is that which corresponds to the 
ellipticity dB of the earth as derived from the measured arcs 
of meridian. The results of pendulum observations have 
been supposed to give, by means of Clairaut's Theorem, an 
ellipticity of about which corresponds with n = =. We 
shall see, in a subsequent chapter, the bearing of recent ob- 
servatio~w in India on this point. 

That the agreement indicated in the last paragraph between 
the results of the.preceding theory and the results of olserva- 
tion and measurements is not more exact need not surprise us. 
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The substance of the earth is not of the nature supposed in 
the theory; that i t  was a t  one time entirely fluid is almost 
certain, but at present the c m t  at  leaet is solid to a depth of 
many miles, and the whole visible surface is most irregular, 
presenting oceans, continents, and mountains. The surface 
which has to be compared with theory is that of the ocean 
continued in imagination to percolate by canals the con- 
tinents : this surface, represented always by the mean height 
of the sea, is what we understand by the mathematical surface 
of the earth. The irregular and unsymmetrical forms of 
oceans and continents forbids us to suppose that the form 
of the sea is any regular surface of revolution, and this 
irregularity must produce a discordance between the fluid 
theory and the results of measurements. Every mountain 
mass we assume to produce some disturbance of the mathe- 
matical surface, and any variation of density in the underlying 
portions of the crust will do the same. Having seen that the 
general figure of the earth is very fairly in accordance with 
theory, we shall now examine into the irregularities of the sur- 
face caused by disturbing masses, and in so doing, we may sim- 
plify matters by neglecting the earth's ellipticity m d  rotation, 
and consider i t  a sphere whose density, except near the 
surface, is a function of the distance from the centre. Suppoee 
then, in the first instance, the earth to be such a symmetrical 
sphere covered with a thin film of sea, its radius = c; let 
matter m be now added all over. and throughout the crust, of 
varying positive or negative density S: a function of the 
latitude and longitude, in such a manner as to represent the 
actual state of the earth's superficial density and inequalities. 
The total amount of the disturbing matter m is to be zero. 
Now take any point P on the surface of the no longer 
spherical sea, let y + c be the distance of P from the earth's 
centre, and let the potential a t  P of the mass m be 7. Then 
the surface of the sea being an equipotential surface must be 
represented when the constant is properly determined by the 
equation 

M M P + - = - - constant. 
c+y c 

where M is the masa of the earth. Since y is very small, me 
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shall omit its square, thus 
M 
7 Y  

= P+ constant, 

Here C is to  be determined so that 
f f y  sinOdOd$, 

taken over the whole sphericel surface, may be zero. Let ns 
now, since i t  is impossible to aesign any general form to P i n  
the equation just deduced, suppose the case of the disturbing 
masa being restricted to a certain locality. We shall suppose 
i t  to be a mass of great density and of such compact form 
that its potential shall be the same, or very nearly the same, 
as if the whole were gathered into its centre ; which is s u p  
posed, moreover, to be below the wrface of the ground. 

Let pH be the mass, I c  the depth of its centre below the 
surface. Let 0 be the angle be- 
tween the radius drawn through , , ~ - - - . p  

m, the centre of the disturbing { Tlll/\l 
masa, and that drawn to P a 

,G 
point on the disturbed surface. 
Let p be the projection of P on 
the spherical surface, then since o 

P p  is very small, we may put :~L 

T=pM-mp,andi fmO=kc,  \.d 
PC -.. ....._.___.-'~- 

Y E  (1 +k2-akcose)+ 
+ c, 

Fig. 13. 
will be the equation of the curve 
which by revolution round mO generates the disturbed sur- 
face. The volume contained by this mrface will be equal to 
that of a sphere of radius c if we make 

i w y s h e d e  = 0, 

or, 
'j~c sin Odd + 2C=O;  
- 2 k cos o)* 
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hence C+ pc = 0, and, 
1 

y = p c  j(l+k2-2kCosB)* - 11: 
expresses the elevation of the disturbed surface a t  every 

poirrt. 
It will be seen ttnf if we draw P O  bisecting m 0 a t  

right angles, then y is positive for all those pointg which are 
on the same side of P G  with the point m, and negative a t  all 
other places. The maximum value of y corresponds to 8 = 0, 
showing that the greatest elevation takes place directly over 
the disturbing mass. This maximum elevation is, neglect- 
ing h2, 

I n  order to get some definite numerical ideas from the 
result a t  which we have just arrived, let the disturbing mass 
be a sphere of radius = n miles, its centre being at  the same 
distance n below the surface. Let its density,-being that 
by which i t  is in excess of the normal density in its vicinity- 
be half the mean density of the earth, then 

Here Pis expressed in miles : to express i t  in feet we must 
multiply this by 5280, also put c  = 3960 ; thus in feet 

Y =  $n2. 
If then the diameter of the sphere of disturbing matter be 

one mile, n = a, and the value of Y is two inches. This 
shows that a large disturbing mass may produce but a very 
small disturbance of the sea-level-whether indeed the mass 
be situated above or below the surface. A displacement of 
the sea-level, such as h a  just been supposed, could not make 
itself directly perceptible in geodetic operations, but indi- 
rectly i t  can, viz. through the inclination of the disturbed 
surface to the spherical undisturbed surface, or which is much 
the same, by means of the altered curvature of the surface: 
for careful geodetic operations enable one to assign the local 
curvilture of the surface with considerable precision. 
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Let us confine our attention to the surface in the vicinity 
of the disturbance, and thus disregard powers of 0 higher 
than the square, then the equation of the generating curve is 

of which the part pc may be d i s m i d  from consideration 
being a very small constant. The angle between the surfaces 
-termed local deflection of the plumb-line--is 

also, since 

the greateat local deflection corresponds to 

that is, i t  is found at  a point on the surface whose distance 
from the radius of the earth passing through the centre of 
the disturbing mass is to the depth of that centre as 1 : 4 2 .  
The maximum deflection $ then has the value 

Taking the same disturbing mass as before, that is to say, 
with s radins of n miles, this becomes in arc 

or expressed in seconds 

which is almost exactly 10%. Taking n as in the previous 
case = a, JI = 5".0. Now this in geodetic measurements is 
a large quantity, that is to say, that with ordinary care, one 
can determine the latitude of a place to half a second, so that 
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5" would be a very measurable quantity. Then if we con- 
sider two points which lie on opposite sides at  the distance 
+ c A l / $  from that point of the surface which is vertically 
over the disturbing mass, the angle between the normals to 
the dbturbed surface a t  those points will be larger than the 
angle between the corresponding normals of the spherical 
surface by 10". This leads us to aonsider the curvature of 
the surface in a plane section passing through the earth's 
centre and the disturbing mass. The radius of curvature R 
may be obtained from the known formula 

dr 
we may omit the square of -, and thus with sufficient pre- 

dB 

To determine the maximum and minimum values of the 
curvature, we must put the differential coefficient of R-l, with 
respect to 8, equal to zero : that is, 8 (2 Oe - 3he)  = 0, which 
is sat,isfied either by 8 = 0, or 0 = A J;, the former corre- 
sponds to the maximum curvature which is found vertically 
over the disturbing mass, and is expressed by 

while the minimum curvature found at  the distance c l z / +  I 

is expressed by 

Now whatever be the radins of the disturbing sphere, if 
the depth of its centre be equal to its radius, and the dis- 
turbing density be half the mean density of the earth, then 
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p = f hsy and the radii of the surface become changed in the 
positions indicated into 

22, = + c, 22, = c, 
so that  enormous variations of curvature result from even 
small disturbing masm below the surface. That effecta of a 
similar character would follow in the csoe of compact dis- 
turbing masses above the d a c e ,  is easy to see. 

To take the case of a supposed mountain range, of which 
the slope is much more precipitous on one side than on the 
other; let us enquire into the difference of level of the dis- 
turbed d a c e  of the eea a t  the foot of the one slope as 
compared with that a t  the other. Strictly speaking, the level 
will be one and the same, but there will be a difference with 
reference t o  the undisturbed spherical surface. For sim- 
plicity, suppose the range to be of a uniform triangular 
eection ae in the sccom- 
panying diagram : let 8, 

d be the lengths of the 
slopes, u, d their inclin- 
ations. We shall sup- 
pose that the breadth S 

of the bsse $5' = a, is 

/As, 
Fig. 14. 

considerably less than the length of the range. To determine 
the potential of the mass a t  the middle of its length and a t  
the foot S of the slope, let i t  be divided by planes passing 
thnxlgh the edge S of the p r im  as indicated in the figure, and 
these slice0 into elementary prisms as indicated a t  P. Let 
2'88' = qY 8SP = r, and let x be the distance of any point in 
this elementary prism from its centre, then the element of 
mass to nnit density is r d $ dr da, and 

P= 24'rS rdjrdrda 
0 0 ( r ~  +a?)* ' 

where 2 k is the length of the range. After the a integration 
we may--omitting terms depending on r8 : k2--substitute 

ke 4 
l o g 2  r for log{; + (7 + I )  l' 
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+ t m w a  (d++)]d+; 
the result of this integration givea 

where A is the area of the triangular section. Similarly at  S' 

In  taking the difference, k is eliminated, thus 
P- 7' -- - 
2 A  

Now according to the formula (20) we have already in- 
vestigated, the elevation of the disturbed surface at  8, above 
that a t  8' is 

c2 
~-Y'=jg(~-v?; 

put here c = 3960 miles, and let the ratio of the deneity of 
the mountains to that of the earth be 4, then, expressed in 
feet 

Suppose, for example, that the base of the slope 8 is one mile 
in breadth, that of B three milea, so that a = 4; then the 
height being taken as one mile, the value of P- F is 
+ 1.426 : the surface of the sea therefore at  S is further from 
the centre of the earth by 2.76 inches than it ie a t  S'. 

18. 
Let us next consider the effed of an extanded plateau or 

tract of country in elevating the surface of the sea along its 
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coast. The simplest case that can be taken is that in which 
the boundary of the tmct in question is a small circle. Let 
E be the centre of this circle, its radius = a, P any point of 

L the wrface within the circle, and F a fixed point on its cir- 
cumference; let a h  EFP = +, FP = 8, and let y be an 
angle, such that 

tanf y = tanacos+. 

Let h be the height, supposed uniform, of the plateau, eo 
that an  element of mass at  P is ce h sin 8 d +  dB, then h being 
taken as indefinitely small with respect to c, the potential at  
Pis 

So also we may find that the potential at  E is 4ach sin ) a, 
while a t  the opposite point E' of the sphere i t  is 

Then if, as in (21), yo, y, y' be the elevations in feet of the 
sea at E, F, and J respectively, the density of the attracting 
region being half the mean density of the earth 

We cannot get C without integrating a general expression 
for P over the entire spherical surface, but we may approxi- 
mate to i t  by coneidering that a t  E', y' must be negative, so 
that C is numerically a larger quantity than -4 ch be aa. 
I n  the case of the compact disturbing mass, we saw that y 
vanished st about 60" distance, and if we take this as a guide 
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in the present instance, it is to be noted that the potential of I 

the disturbing region (a being small) at  60' distance is about 
double the potential at  180" that is at  E'. This mould give 
C = - 8 cA sin2 4% so that a t  any point on the circular border 
of the plateau the elevation of the sea-level in feet is 

where c and 1 are to be expressed in miles. 
Now, to apply this very rough approximate calculation to 

an actual case, take the plateau of the Himalayas. The area 
on which these mountains stand, though not circular, is 
equivalent in extent to a circle of about 5' radius, and the 
height is about 15,000 feet: this gives y in round numbers 
600 feet. This calculation then shows us that large tracts of 
country may produee great disturbances of the sea-level, but 
i t  is a t  least questionable whether in point of fact they do. 
The attraction of the Himalayas as deflecting the plumb-line 
at  various places in India has been computed', and i t  hae been 
found that there is I.ittle correspondence between theory and 
observation, for the attraction of the Himalayas only makes 
itself perceptible to observation at  places quite close to them. 
Hence i t  is to be inferred that there is some counteracting 
cause cancelling the attraction of the visible mass. In our 
entire ignorance of the manner in which the crust of the 
earth has arrived a t  ita present form, one can do little more 
than invent hypotheses of greater or less probability to 
account for the apparently aingular physical phenomenon 
here presented. 

The first explanation offered was that of the Astronomer 
Royal, Sir George Airy (in the Philosophical Bansactiom for 
1855, page 101) : i t  is b a d  on the assumption that the 
crust of the earth is thin. Suppose, for instance, the solid 
crust had a thickness of 10 miles, the interior of the earth 
being fluid. Now suppose a table-land 100 miles broad in its 
smallest horizontal dimension, and 2 miles high throughout 

8ee A lk&s m Athurdimu, Lophce'r  PuncQionr and the EYgcurc of the 
Earth, by J. H. Pratt, M.A., F.R.S., hhdeacon of Cdcutb. Also pspere 
by the a n e  in the PhUomphiad h w d h r  for 1855, 1858, and 1871. 
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to be placed on the surface; will this maw be supported or 
break through the cruet and sink partly into the fluid? I n  
the adjoining figure, let abcd be part of the earth's crust, 
e f g the table land, and sup- ! pose the rocks to be separated a 

C 6 f 
I I d 

by vertical fissures as indi- 11 I I i C 
cated by the dotted lines, and e. 15. 
conceive these fissures to be 
opened as they would be by a sinking of the middle of the mass, 
the two halves turning upon their lower pointa of connection 
with the rest of the crust. Let W be the weight of a cubic mile 
of the rock, and C the cohesion or force necessary to separate 
a square mile. Then the cohesion at  k is 1 0  C, and at  i i t  is 
12 C; also the superincumbent weight of each half is 2 x 50  W, 
therefore considering one half only as eg, and taking moments 
1 Oe C+ 12= C = 2 x 5Oa 7P, so that C is about 2 0  7P. That is, 
the cohesion would have to be sufficient to support a hanging 
column of 20 miles of rock. Had the thickness of the crust 
been awmmed as a hundred miles, we should have had c ~ t e r t s  
pan't3ua C =  f W. Even in this case the force of cohesion 
necessary is greater than can be supposed to exist, therefore 
the table land will not be supported by the crust. It appears 
then probable that such mountain masses must Le accom- 
panied with corresponding 
solid depreesions as e'f', or e y  f d 

iIldentf'tions into the fluid wbha,sdwa 
in ordcr to preserve equili- 

Fig. 16. 
brium. Now if we snppoee 
s station a t  a, there will be a deflection towards e owing 
to the attraction of the wperincumbent matter ef, but the 
substitution of the lighter matter dl '  for the denser fluid 
matter, produces s negative attraction in the same direction. 
The diminution of attractive matter below will be sensibly 
equal to the ineresee of attracting matter above, and if the 

t point a be not very near to ef,  there may be no disturbance 
at all; but if a be close to the table land, and especially if 
the crust be anything like 1 0 0  miles thick, there will be a 
very eensible disturbance. The reasoning here applied to 
table lands does not apply of course to small compact mountain 

H 
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masees such as Schiehallion or other isolated hills, or to small 
tracts of hilly country. 

Archdeacon Pratt, as the result of hie extensive calculations 
connected wit11 the attraction of the Himalayas, not only ae 
affecting by the horizontal component the direction of the 
vertical, but as affecting by the vertical oomponent the 
oscillations of the pendulum in India, devised the theory that 
the variety seen in the elevations and depreaeions of the 
earth's surface, in mountains and plains, and ocean beds, has 
arisen from the mass having contracted unequally in becoming 
solid from a fluid or semifluid condition; and that under 
mountains and plains there is a deficiency of matter approxi- 
mately equal in amount to the mass above the see level: and 

that below ocean beds there is an excess of matter approxi- 
mately equal to the deficiency in the wean when compared 
n ith rock ; so that the amount of matter in any vertical 
coliimn drawn from the surface to a level surface below the 
crust is approximately the same in every part of the earth. 

According to this theory, which receives much support 
from the results of geodetic operations in India, the d i 5  
turbance of the sea level caused by the apparent masses of 
continents must be of a very small order. For the dieturbance 
resulbs, as i t  were, from a mere transference of matter in the 
earth's crust in a direction to or from the centre. That such 
a displacement of matter but slightly disturbs the sea level is - almost self-evident, but we may get some distinct numerical 
idem from the following imaginary case. 

From a sphere of radius s and density p, a sphere of deneity 
p is abstracted, its centre being at  P originally is transferred 
to Q in the line OPSQ, 0 being the centre of the first sphere, 
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and 6 a point on its surface. The distance SQ in to be equal 
to 6P = A, and the mass of the removed 
sphere ia fn: it is assumed moreover that 
1 is very small with respect to c, and that 
m is equivalent to a sphere of radius A. 
Let N be a point on an equipotential sur- 
fsce very .nearly coinciding with the 
surface of the original sphere, whose maas ? o 
ie df, ON = c+y, then Fig. 18. 

M m -- m 
c + y  3T+mj= constant ; 

or which is the same 

where g = A : c. Now 

where Pa = 4 c2 sin2 f 8+ he ; the square of y being omitted. 
If in thie expression we change the sign of 1, the value of NP 
is obtained : putting also 2cP, = P, 

Put  P I p s  = T,-, then the equation of the surface is 
Po 

But @ being very small, we shall omit yg8,  and write the 
equation thne 

I n  order to determine that partioular e~]~r&ce, which con- 
tains a volume equal to that of the original sphere, we must 
make the integral of y sin 0 d d = 2 yd (sin2 4 0) over the 

a 2 
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spherical m u h e  equal to zero, or putting eina 4 8  = n, 

in the last integraI we may omit terms of a small order, and 
thus we get C-7 = 0, BO that the equation of the surface is 

Thus the elevation of the eea level a t  8, where 8 = 0, is w 
whiie a t  the opposite point of the sphere i t  is hnlf that 
amount-omitting qaantities of a smaller order. The point6 
where y vanishes are to be found from the cubic equation 

( ~ + / 3 ~ ) 8 - 2  = 0, 
where 4 sin9 4 B = z. The roots of t h k  equation are by ap- 
proximation 

a, = 1-3Pa-38'- ... , z2 = /33+g/34+... , 
as = -B3+#/3', 

of which the last gives imaginary values of 8. Tbe real 
valnea are given approximately by 

s ; n t e = + t ,  s i n a d =  kt@; 
the first corresponding to 8 = + 60°, or nearly, while to the 

second correeponde a very small 
value of 8. Let, in the sdjoin- 
ing figure, e f be the two pointe 
where y vanishes; then from 6 
to e, y is positive, from e to f it 
is negative, the greatest negative 
value being 

2 
7 (1.- -1 , 

of which the greater part is 
~. .- 

Fig. 19. 

From f, y ie positive, and increasing up to 0 = 180'~ being 
represented approximately by 
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The greatest alteration of the sea level is the maximum 
between e and f, which occurs a t  the distance h 4 2  from 6. 

Suppose the small sphere to have a radius of 10 miles, and 
a density half the density of the large sphere, and that its 
centre is removed from a depth of 10 miles below the surface 

I to a height of 10 miles above the wrface, so that A = 10, and 
let c = 3960. Then the greatesf depression between e and f 
will be found to be about 0.8 inch, whiIe the positive eleva- 
tions become very minute. 

2Q. 
We shall conclude this chapter by considering the relation 

of hhe surface of a lake situated above the sea level to that o f  
sea; and here we leave out of cansideration any departures of - - 
the sea from the spheroidal form in consequence of attractions 
of the solid matter in the vicinity of the lake. At the surface 
of the latter the condition of equilibrium ie 

P+ 4 r2 ma (1 -p) = O ; 
also, we have seen that g king the force of graviby, 

d o  
9 = - - .  dr 

Hence i t  followe, that if h be the height of the lake-being 
a small quantity--gA = a constant. We may imagine the 
surface of the lake continued so as to surround the earth, 
then the distance of this muface from the surface! of the 
sea a t  any place is inversely proportions1 to gravity a t  that 
place. The surfaoe of a lake then is not exactly parallel to 
that of the ax, the inclination d them surfeoee being 
measured in the mer id i i  plane. Let #I be the latitude, I 
the angle between the surface of the U e  and that of the 
(imaginary) sea below it, then 
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bat g = @ { I  + ( t m - d ) ~ i n ~ t + )  ; 

It follows from this, that the latitude of a station whose 
height is A, as determined by observation, requires the cor- 
rection I. But thia ie practically a very small quantity 
only amounting to a few tenths of a second for ordinary 
mountain heights. 

To express I in seconds, the right hand member of the last 
equation must be divided by sin 1". Then c sin 1" being the 
length of one second on the earth's surface, is approximately 
100 feet: also approximstely,+nc-eD=0.0052. If then the 

%eight expressed in thousands of feet be 8, 



CHAPTER V. 

DISTANCES, AZIMUTHS, AND TBIANGLES ON A SPHEROID. 

Asscla~~o that the figure of the earth is an ellipsoid of 
revolution generated by an ellipse whose semiaxes are a 
and c, so that 2 0  i8 the diameter of the equator, and 2c the 
polar axis, then the equation of the meridian curve is 

a+' 2s 
p + , = 1 ;  c 

where z and z are the dietancee of any point in the meridian 
&om the axis of rotation and from the plane of the equator 
respedively. This equation is eatisfied by the values 

rn=acosr, B = csinu. (1) 
The latitude of a point on the surface of the earth is the 

angle made by the normal at  that point with the plane of the 
equator. Let t#~ be the latitude of the point determined as 
above by u, and let e be the length of the elliptic curve of the 
meridian measured from the equator as far as the point who= 
latitude is +, then 

-dx = a sin r d u  = sin $ds, 
dz = c c o s u d u =  cos+ds, 

(2) 

whence the relation of #I and r, 
a t a n r =  ctang.  (3) 

The angle u ia termed the reduced latitude. Let e be the 
eccentricity of the meridian, so that n2es = as-c2, and put 

~ ~ = l - e ~ s i n ~ $ ,  V2=1-Cdcos2r; (4) 
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then we may readily verify the following relations : 

A V  = G 8 ,  
V  sin c# = sin s, 

cos I$ = A  COB il, 

Thns the coordinates x and z may be mitten 
a 0 s  4 a sin $ 

a=- 
A A  z = -  

(1 -4. 
If me differentiate (3), and eliminate dw by (2), we get 

da 1-8 
A3 ' GZ5- 

and this is the radius of curvature of the meridian. Call it 
0, and let p be the radius of curvat,ure of the section of the 
surface perpendicular to the meridian, this being also the 
normal terminated by the axis of revolution. Then 

-In the adjoining &,onre, let 0 be the centre, and O P  the 
polar semiaxis of the spheroid, EQ 
the equator, A, B points in the 
meridians PAE, P B Q  : a, b the 

a projections of A, B on the axis, dN 
the normal a t  A, BN the inter- 
section of t.he plane A N B  with 

" the meridian of B. Let K be the 
projection of B on the plane PA EO, 
and draw BH, HK perpendicillar 
to AN. Let a be the azimuth of 

O B a t  A, namely, the inclination of 
the plane NAB to the plane Nd P, 
and if 90" + p be the zenith distance 

Fig. 10. of B a t  A, then B A N =  90'-p. 
Take OE, OP as axes of z and 

I, thnt of y being at  right angles to these, then if u, w' be the 
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a p A  represent in relation to A, then we get from the pre- 
ceding, the following system of equations : 

ZI 
sin p = A sin - sec \lr, 

2 
0 

sin p' = A' sin - sec J I ,  
2 

a 
sin a cos p = cos i sin o, 

a 
sin d cos p' = - cos u sin o, 

k 
which express the distance with the mutual azimuths and 
zenith distances of two points on a spheroid. 

If we divide the second of equations (9) by the third, we have 

V cot a cos u' sin w = cos u sin 11' - sin u cos u' coos w 

+eBcosuX; (11) 

substitute here for the terms in u, d their equivalents in 
+, @', then put B, @' for what we may term the spherical 
azimuths, that is the values of a, a', when e is put = 0, then - 
we easily find 

8 cos4 A'sin+-A&+' 
cota -cotB = -- a coscp8 ( sin, > 9 

e' cos 9' (A' sin fi;t sin +' 
-cot a'+ cot p' = - - 

A' cos C#J ). 
By a series of reductions which we shall not here trace out 

(Memoire of the R. A. Soc., Vol. xx, page 13 I), the following 
result may be obtained from these equations : 

Now the maximum value of the small term in e4 is 

if the distance corresponding to k be n degrees, this expressed 
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in seconds is 0".0000015nS, which for a distance of even 
several hundred miles is practically zero. Hence, the follow- 
ing important theorem: If $, +' be the latitudes of two 
pinte, o their difference of longitude, a, d their mutual 
azimuths, then 

tan 4 (a+ a') = cos b (+'-+I cot 
sinh(@'++) 2 

Thus i t  follows that the ' spherical excessl ' of a spheroidal 
triangle is equal to that of a spherical triangle whose angular 
points have the same latitudes and longitudes as the corre- 
sponding points of the spheroidal triangle. 

4. 

Let S be any point in the curve 4 B :  from S draw SG 
perpendicular to AN; let SG = &, AG = so that &, < are 
the coordinates of S, then putting 

the equation of the curve ASB is found to be 

t2(1 +A2)-2hLfEI+S2(1+f2) -2pI=  0; (14) 

this may be obtained in the following manner: if J be the 
projection of S on the meridian plane of A, the distance of J 
from the axis of revolution is 

= (,-c) cos+-&cosa sin$, 

while the length of SJ is 
y = fsina, 

and the distance of S from the plane of the equator is 

Z =  (p(1-eg)-~)sin$+[coeacos$. 

These being connected by the relation 

(1-e2)(2++Y2)+z2 = ce 

give the equation (I  4). 
From (14) me can deduce the radius of curvature of the 

vertical scction at  A, for i t  is the limit of the ratio of t2 : 2 5  
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when those quantitiee vanish. If R be this radiue of 
curvature 

If we put [ = r cos 8 and ( = r sin 8, the equation (1 4) may 
be written thus 

r+r (h~os8-fsin8)~-2R(1 +he) sin8 = 0 j 

from this we may, putting 8 = A r  + Bid + CrS ... , obtain B in 
t e r m  of r by the method of indeterminate coefficients. We 
shall simply give the result-which is, putting 

which is another form of the polar equation of AB. If r be 
the length of the curve from A to S 

1 dB1 1 dB' :. r = r + J(a9s - -+-...I 8 dt.4 hi 

and if we substitute in this the values of the differential co- 
efficients derived from the equation of the curve just given, 
the result after integration ie thia 

If we substitute in the equation just obtained k for r, we 
have the length of the curve joining AB. Unless, however, 1 
in a csse in which for some special reason an extreme pre- 
cision is required, several terms of the series may be rejected. 
For instance, that involving esk6 can only amount to a 
hundredth of a foot in 300 miles, the term in e4k4 ie still 
smaller ; so that we may safely put 1 
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Let R' be the same fnnction of a'#' that R is of a+ ; then 
the length of the curve joining AB, which is formed by the 
intersection of the surface, and the plane which contains the 
normal a t  B and passes through A b 

Now the difference of s and d is of the order c4 P, and is to 
be entirely rejected : and if we take for 8 the mean of the last 
two series, it will be seen that in adding them together the 
terms in eeP so far cancel, that their sum becomes a term of a 
higher order which may be neglected. I n  fact either series 
may be represented by 

k 3 3kb 
s = k + 7 + -  

24R0 640~ , , "  
where 

1 Ji=7 
K = . (VV')~ 

( 1  - ee cos4 u sine a), 

Ro being a mean proportional between R and R', or rather 
very nearly so ance ea coa2 x sin2 a differs inappreciably from 
eP coea u' sin4 a'. 

As i t  may be interesting, as occasion offers, to compare 
precise results with others obtained by means of approximate 
formnlm, we here give the results of the calcnlation by the 
formnlre just investigated, of the anglea and aides of a 
spheroidal triangle of which are given the latitudes and 
longitudes of the angular points. Asaume for A, 23, C these 
positions 

Lat. Long. 
A ... 51°57'N. ... 4'46'W., 
B. . .53 4 N  .... 4 4 W., 
C.. .50 37 N .... 1 12 w.; 

and take for the elemente of the spheroid 
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Also 
loga = 7.3206874662, 
loge2 = 7.8304712628, 

log ~T-c = 9.9985253144. 

The reduced latitudes of A, B, C, and the corresponding 
function8 A,, A,, A, are first found to be 

d ... z+ = 51' 51' 19".92163, log A, = 9.9990867071, 
B .. . U, = 52 58 23 -43810, log A, = 9.9990589261. 
c ... U, = 50 31 16  -40080; bg A, = 9.9991202240 ; 

for the subsidiary angles corresponding to the opposite sides 
v 

log s i n 1  = 8.4217198302, log sin$, = 8.6156259752, 
2 

. v 
log ern? = 8.3562766510, log s i n k  = 8.4221562901, 

2 

Counting azimuths continuously from north round by eaat 
and muth, the azimuths of the sides are found to be 

A B  ... 20' 39' 1V.2401, BA ... 201' 12' 36".8177, 
B C  ... 142 55 50 e2183, CB ... 325 11 7 -4013, 
CA ... 302 10 54 -6710, AC ... 119 23 54 -3366; 

whence the angles 
A = 98' 44' 37"-0965, 
B = 58 16 46 -5994, 
c= 23 0 12 -7303, 

A + B + C = 1 8 O  1 3 6  -4262. 

The distances, chords and curve lines, come out thus, 

Again, take a triangle near the equator, and let the 
positions of the angular points be as follows: 

Lat. Long. 
A ... l0 30' S. ... o0 0' E., 
B...O 2 0 N  .... 0 30 E., 
C . . . l  3 0 N  .... 3 OE.; 
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then the azimuths, angles, and sides, trne to the last place of 
decimals, are them- 

AB, 15" 21' 24"-0371 ; BA, 196" 21' 5".7090; 
BC, 6 5  6 46 -6939; CB, 245 9 10 .7078 ; 
CA, 225 12 16 e2131; Ac, 45 12 16 -2131 ; 

A = 29" 50' 52".1760 ; BC = 1006266.448 feet; 
B = 130 14 19 -0151 ; CA = 1544212.630 feet; 
C = 19 56 54 4 9 4 7  ; AB = 689666.750 feet. 

If the two points whose distance apart is required are on 
the smme meridian, and have latitudes & $', then 

It is convenient to replace here e2 by another symbol n, 
such that 

a-c - n=- 4 n :. 8 = - 
a+c ' (1  +n)2 ' 

the result is 

The expansion of (1 + 2 n cos + + nz)-4 will be found at 
page 5 1 : if we effect the required integration the result is 

8 - = ( 1  +n++n2+in"((Q-$) 
C 

- ( 3  n + 3 nZ t g2 rs) sin ($'- +) cos (+' + +) 
1 6  a +(. n +$!nS)sin2($'-+)cos2(@'+$) 

-Gr8 mn3(@'-$)coa3 ($'++I. 
The part of 8 which depends on rS may always be safely 

omitted; in fact, for the Russian arc of upwards of 25', i t  
amounts to only an mch and a half. We may therefore take 
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This expresses the length of an arc of the meridianabetween 
the latitudes C$ and +', the ratio of the semiaxee being 

1 -n : l+n ,  

and the polar semiaxis = c. 
It is customary in geodetical calculations to convert a dis- 

tance measured along a meridian-when that distance does 
not exceed a degree or so-into difference of latitude by 
dividing the length by the radius of curvature corresponding 
to the middle point, or rather to the mean of the terminal 
latitudes. And vice versa, small differences of latitude are 
converted into meridian distance by multiplying the difference 
of latitude by the radius of curvature at  tohe mean latitude. 
The amount of error involved in this procedure may be 
readily expressed by means of the above series ; i t  depends on 
n, and the higher powers of n ; these last we may leave out of 
consideration, requiring only the principal term of the error. 
Let C$ - 4 a, 4 + a be the extreme latitudes, then 

8 =  c(1+s)a-3casinacos2#, 

but the radius of curvature is c (1 + s)- 3nc cos 2 #, so that 

8 =ea++enascos2@.  

The error we are in quest of is therefore + enaS cos 29. 
This vanishes in the latitude of 4 5 O ,  and in latitude 60°, i t  is 
(since n = & nearly) about fas. For one degree 

the error is half an inch. For 100 miles i t  would amount to 
nearly two inches. 

We may here notice a source of error that exists in all 
theodolite observations of horizontal angles. If B be the 
projection on the spheroidal surface of a signal B at  a height 1 
1 above B, then to an observer a t  A, B and B' are not in the I 



game vertical plane, unless B happens to be in the ssme latitude 
as A. The angle between B and B' a t  A is in fact, as may 
be eaeily verified, 

This is a very small quantity: in the latitude of Great 
Britain it can only amount to an eighteenth of a second for 
every thousand feet of height. If h be such that, neglecting 
the consideration of refraction, to the observer a t  A, B ap- 
pears at a zenith distance of 90°, then h = P: 2a, and the 
error ia 

The plane containing the normal at  A and passing through 
B, and that  containing the normal a t  B and passing through 
A, cut the  surface in two distinct plane curves. Suppose to 
fix the ideas that A and B are in the northern hemisphere, B 
having the greater latitude of the two : then the curve .4 PB 
made by the plane containing the normal a t  A lies to the 
south of the curve BQA corresponding to the plane con- 
taining the normal a t  B. There is thus a certain ambiguity 
as to what is to be considered the distance AB:  but this 
ambiguity is more apparent than real, for t,he shortest or 
geodetic distance does not, as we shall see, differ sensibly from 
the length of either of the plane curves. The direction more- 
over of B Q A  is correct at  B, and that of APB is fight a t  A. - 
Among the various curves that may be traced on the surface 
connecting A and B, there are two which have a special . 
claim to attention, viz. one which we shall call the curve of 
alignment and the other the geodetic line. We shall refer 
t h e  course of both these to the plane curves, and shall first 
consider the curve of alignment. 

Suppose that an observer between A and B provided with 
a transit theodolite wishes to place himself in line between 
these points. Shifting his position transversely to the line 
AB, he will consider himeelf in line when he finde that a t  

I 
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the point L the vertical plane described by his telescope 

c passes through both A and 
B. I n  the adjoining figure 
let CQLP be a meridian 
plane cutting the plane 
curves in Q, P, and the 
curve of alignment in L. 
Let u,, ti be the reduced 
latitudes of A and B ;  those 
of P, Q, L being respect- 
ively U,, U', U: also let 

ACB= r ,  BCQ = r,, 
BCQ = d. 

Then if a be the azimuth of 
Fig. 21. B or P at  A, (11) gives 

V cos u' sin o cot a = cos r, sin u'-sin u, cos ac' cos o 
- e2 COB u, (sin u' - sin u,), 

V cos sin of cot a = cos u, sin U,-sin u, cos U, cos w, 
- 9 cos u, (sin U, - sin zr,), 

where V2 = 1-8 cos2 u,. The elimination of cot a from these 
equations, gives equation (1 8), viz. : 

sin d - sin u, 
sin U,-Ncos U, = -8 sin o cos u' 
where 

sin a' cos u, sin or +sin u, cos u' sin o' N =  cos uI cos d sin o 
Let us here introduce an auxiliary spherical triangle ABC, in 
which AC = 90"-14,, BC = 90'-u', and the angle ACB = u, 
so that A and B correspond respectively to B and B. I n  the 
side AB take D, such that ACD = w,, BCD = o', so that 
D corresponds to PQ or L. Moreover, let CD = 90"-u,, 
AD = c,, BD = c', and AB = c, then by (8) and (9), pages 
41, 42, 

sin o tan u, = sin W' tan u, +sin o, tan u', 
sin c sin u, = sin c' sin u, +sin c, sin u', 

so that tan 76, = N. It is unnecessary in this investigation 
to retain terms in e4 or higher powers, so that in terms 
multiplied by e2 we may replace U, by u,. Making this 
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substitution in (181, and multiplying through by cos u,, we 
have for P, on replacing sin ( U, - u,) by U, - u,, 

c' C 
2 sin - sin -' 

2 2 U, - uO = 9 COB uo sin u, 
C (19) 

Similarly for the point Q, 
e, 2 sin - sin - 

U'-u, = 8 cosu, sinu' 
2 2 

I? 

COS 
2 

In  like manner the condition that the vertical plane at 
L pas- through both A and B gives for L 

' c' c, 
2 sin - sin - 

U-u, = e2 am U, sin u, 2 2 
C 

CO8 - 
2 

Taking the differences of these equations, and multiplying 
them by a, we have 

c' c 
2 sin- s i n 1  

QP = aea cosu, (sin %'-sin u,), 
C 

C08 - 
2 

c' c 
2 sin sin -1 

2 2 
LP = ae2 cosu, (sin u, - sin u,), 

C 

c' c, 
2 sin - sin - 

Q L = ae2 cos u, 
2 2 

(sin a'- sin u,). 
C 

COB - 
2 

These quantities completely determine the position of L 
with respect to  the plane curves. 

Since the ratio of L P : A P vanishes when A P = c, = 0, i t  
ie evident that the curve of alignment touches at  A the plane 
curve APB, and its azimuth there is consequently the azimuth 
of B. So also the curve of alignment has at  B the true 
azimuth of A. In tracing this curve two cases arise : first, 

I 2  
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sin uo may between A and B have its valuea entirely inter- 
mediate between sin %, and sin u' ; in this case the curve lies 
entirely between A PB and B Q A. But if A and B, not s u p  
pomd to be many degrees apart, are nearly in the same 
latitude, so that the reciprocal azimuths are both ( m e a d  
from the north) less than a right angle, then the values of 
sin u,, will not all be between sin *' and sin u, . I n  such awe, 
QA, as is easily proved, vanishes when 

c c sin u'-sin u, I a n 1  tan- = 
2 2 sin u'+ sin N, ' 

and this value of u, determines the point, say F, when the 
curve of alignment crosses the plane curve B QA. Thus, 
from A to 4 A is between the plane curves, and from F to B 
it  lies on the north side of FB, the actual distance being of 
the order e2c4. I f  A and B have the same latitude, the curve , 

of alignment lies wholly to the north of the plane curve 
between A and B. 

The angle at  which the plane curves intersect, either a t  
A or B, is 

C I = 8cos2% sin 2a  sine-, 
2 

supposing c to be small: and if we compare this with the 
expression, page 130, for the angle which the geodetic curve 

starting from A towards B 
I 

B makes at A with the vertical 

\A 

I 

plane there, we see that, neg- 
lecting quantities of the order 
e2 cS, the angle which the 
geodetic curve makes a t  A 
with the curve A P B  is 

B one third of the angle I, 

\ and mmilarly a t  B. But, as 
we shall see, if we take into 
account the higher powers of 
c, the geodetic cross- BQA 

~ i i .  aa. under some circumstsnces ; 
lying like the curve of align- 

ment wholly to the north of the plane curves when A, B 
having the same latitude, these curves coincide. 
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I n  strict analogy with the method followed in plane curves, 
Gauss defined the curvature of a surface thus: if we have a 
portion of a surface bounded by any closed curve, and if we 
draw radii of a unit sphere parallel to the normals a t  every 
point of the bounding curve, the area of the corresponding 
portion of the sphere is the total curvature of the portion of 
surface under consideration. And if a t  any point of a surface - - 
we divide the total curvature of the element of surface con- 
taining the point by the area of that element, the quotient is 
called the measure of curvature a t  that point. Let the ele- 
ment of surface be the very small rectangle made by four 
lines of curvature. Let a, p be the sides of this rectangle, 
fi p the corresponding radii of curvature. The normals 
drawn through the points of the contour lie in four planes 
cutting each other two and two a t  right angles. The cor- 
responding radii of the unit sphere form on its surface a 

rectangle whose sides are a : e and 8 : p, and its area ap : ep ; 
this divided by the area of the rectangle gives 1 : ep as the 
measure of curvature. Gauss has shown that, if an inex- 
tensible but flexible surface be bent or deformed in any way, 
then tk measure of curvature a t  every point remains the 
same. . Thus, taking a very small portion of a surface a t  the 
centre of which the principal radii of 
curvature are e, p, this portion may 
be fitted to a sphere whose radius is 
(ep)*. mTithout attempting a rigid 
proof, this may be seen as folloms: 
PP, P Q  are the principal sections of 
a surface through P-their radii of 

4- 7 
CT 

curvature e, p respectively. P is a 
point indefinitely near P in FP; 
P'Q' a section of the surface by 

Fig. 13. 
a plane through P' perpendicular to 
the plane FP. Let q, q'be the projections of Q, Q' on the 
plane FP, so that Pq, Pq' intersect a t  the distance e from P. 
P Q  = PQ' being a very small quantity (=s) compared 
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with r or p, - .  
P Pq=Pq"=- ,  
2  P 

then Bince qq' = Q Q', 

Hence, P P  being given, the law of width of the elementary 
strip of surface PQF'Q' is the same as if belonging to a 
sphere of radius (ep)i. Hence, a very small portion of sur- 
face round P may be bent to fit a sphere of that radius. 
When a surface is so bent, lines drawn on i t  remain nn- 
changed in length, and angles of intersection remain 
unchanged. Thus, a ma l l  spheroidal triangle whose sides 
are geodetic lines may be fitted on a spherical surface of 
radius (ep))-these quantities corresponding to the centre of 
the triangle--the geodetic lines retaining their character 
become arcs of great circles, and the angles of this spherical 
triangle are the same as those of the spheroidal triangle 
before deformation. 

We shall now compare the angles of a spheroidal $riangle 
(viz. the true angles as observed or formed by joining the 
angular points by curves of alignment) having given sides 
lying in given azimuths, with a spherical triangle having 
sides of the ssme length, and the radius of the sphere being 
(pg)*, which we shall denote by N. The higher powers of ea 
are to be neglected, and i t  is premised that the differences of 
the angles in question are of the order eat+. If z, y be the 
coordinates of any point of a curve which passing through the 
origin touches the axis of x there, then 8 being the length of 
the curve measured from the origin, we have by Maclawin's 

~ 
Theorem 

.Y9 d a  a3 
- t<) + ..., " = 8 + T ; i ( & 3 + 1 , 2 . s  dr 
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or if e be the radius of curvature a t  the origin 

where (3 is the value of that differential coefficient at  the 

origin. Thew may be written 

Applying these expressions to the curve of intersection of 
the spheroidal snrface with the plane containing the normal 
a t  A and passing through B: drop from B a perpendicular 
on the normal at  A, and let [, 7 be the coordinates of B, c  the 
length of the curve dB, and R the radiue of curvature of the 
section a t  A, then 

which may be written thus 

c  c s l  1 3.=1-cos--- cS d R  
A' N zN (F-z)-m(z)+"" 
Here 

where a is the azimuth of B a t  A, $' the latitude of 8, and 4 
the mean latitude of the triangle. Now i t  is unnecessary to 
retain in the expression for any term of a higher order 
than eSc3, or in 7 any term of a higher order than e2c2, so. 
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& that we may dispense with the term containing (-) ; and ds 
also in the expreesion for R we may substitute for a the 
azimuth of d B  st its middle point, call this y ;  and for #' 
put 4. Thus, 

1 1  _- - -  e2 cos2 t$ cos 2 y 
N R - -  2N ' 

and i t  follows that 

We do not require the smaller terms. Thus the position of 
B is definitely expressed : and the coordinates f ,  q' of C are 
obtained by substituting in the above 6 and B for e and y. 

Il. 

Let A, B, C be the angles of the spherical triangle whose 
sides are a, b, c to the radius N, and let the angles of the 
spheroidal triangle be 

A'= B+dA, B = B+dB,  C'= C+dC, 
and let the azimuths a, p, y of the sides a, b, c (at their 
middle points) be reckoned consecutively from O0 to 360°, 
and in the same direction as the lettering A, B, C. Then 
regarding N as the unit of length, 

+ r2 -266' cos A'+(v'-rl)2 = BC2. 

But we have also 

Substitute for [('qt)', and put 2z e2 cosB #I = i : then on 
equating these values of BCa, we get after a slight reduction, 

o = 2 (cos a - cos 6 cos c- sin b sin c cos A') 
+ i a 4 c o s 2 a + i b 2 c o s 2 P . V + i c 2 c o s 2 y . K ,  
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where 

Now put for cos A' its equivalent coe 8-dB sin 8, then, if 
A be the area of the triangle, the above expwsion beeornee 

+ Z c 0 s 2 ~ ( a ~  t 2abcosC), 
which by means of (2), page 38, is reduced to 

4 ~ d A  = 2irrdcsinA (csin(a+y)-bsin(a+p)}. 

Thus, we get the first of the following equations ; the 
others follow by symmetry : 

These may also be put in the form 
dA = i l a  sin 2B-ics sin 2y, P 2 )  
d B  = ica sin 2 y-ia2 sin 2a, 
dC = iae sin 2a-ibP sin 2p. 

Thus i t  appears, that to the order of small quantities here 
retained, the sum of the angles of the spheroidal is equal to 
the sum of the angles of t,he spherical triangle. As a 
numerical example take the large triangle calculated with 
precision a t  page 11 0. The mean of the three values of N 
corresponding to the angular points of the triangle is 
20942838, and the above formulse give 

dA = -OW.O93, d B  = +0".132, dC=-0"-039. 

In fact, if with this value of N, we convert the sides a, 6, c 
of the triangle into arcs, and calculate with precision the 
angles of the corresponding spherical triangle, me have the 
following contrast of angles : 

Account of the Principal Triangulation, page 241. 
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Spheroidal. Spherical. 
o r  n a J // 

8' = 98 44 37.0965, A = 98 44 37.1899, 
# = 58 16 46.5994, B = 58 16 46.4737, 
c' = 23 0 12.7303, C = 23 0 12.7634, 
c'= 1 36.4262. r = 1 36.4270. 

Thus the actual difference of the spherical excesses of the 
two triangles is 0".0008. 

Suppose now that using the two sides a, b of a spheroidal 
triangle and the included spheroidal angle we calculate by 
the rules of spherical trigonometry the remaining angles and 
side, and let it be required to express the errors 2 A, 2 B, a c  of 
the angles and side so obtained. Now in the spherical 
triangle, a, 6, C give A, B, c ; and a, b, C+dC would give 

c + b s i n A d C  ,, ,, e. 

Therefore, since dA + d B  + d C  = 0, 

Substituting the values we have obtained for dA,  dB, 

2A = iab (2 sin (a+@)+sin 2y COS(~-B)), (23) 
2B =-id {2sin(a+p)+sin2y cos(a-p)). 

Again, if with the side c of a spheroidal triangle, and the 
adjacent spheroidal angles, we calculate the other two sides by 
the rules of spherical trigonometry, their errors will be, as we 
may easily verify, 
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a b c  
aa = i- ( 2 ~ i n ( a + ~ ) + s i n 2 / 3 c o s ( a - ~ ) } ,  (24) 

em C 
. ubc 

a6 = - r  m7 ( 2 ~ ( 1 3 + y ) + s i n 2 a m ( 1 3 - y ) } .  

Thus the greatest error that can arise in the calculated side 
of a triangle on account of the spheroidal form of the surface, 
is less than 

ea abc - cos2 @ - 
4 sin C' 

where Cis  the angle o p p i t e  the base or given side. 
I f  i n  the case of our spheroidal triangle of reference we cal- 

culate from the given side c the sides a, 6, their errors are 
+ 0-5 ft. and +0.7 ft., which are very small in respect to 
those large distances, viz. u = 209 miles, b = 180 miles. 

It follows therefore that spheroidal triangles may be calcu- 
lated aa spherical triangles, that is to say, they may be 
calculated by using Legendre's Theorem, and obtaining the 
spherical excess from the formula 

abmnC' = 
2 IP sin 1"' 



CHAPTER VI. 

GEODETIC LINES. 

THE geodetic line has always held a more important place 
in the science of geodesy amongst the mathematicians of the 
continent, than haa been assigned to it in the operations of 
the English and Indian Triangulations. Here, indeed, i t  has 
been completely set aside, partly because the long arcs 
measured are in the direction of the meridian-itself a geo- 
detic line-and partly because the actual angles of a geodetic 
triangle cannot be observed, since, as we shall see, the 
azimuth of a geodetic, as i t  starts from a point A to a point 
B, is different from the astronomical azimuth of B at  A. 
But the difference of length between the plane curve distance 
d B  and the geodetic distance is all but immeasurably small 
for any such distance as three or four degrees. I t  may also 
be proved that the calculation of spheroidal triangles as sphe- 
rical is correct only when the observed angles have been 
reduced to the geodetic angles, that is, the angles in which 
the geodetic lines joining the three vertices intersect. Still 
the difference is so very small that for such triangles as are 
formed by mutually visible points on the earth's surfsce i t  haa 
been generally disregarded. We do not however conclude 
that geodetic lines have no necessary place in geodesy. Both 
the extreme precision now attained in tlie measures of base 
lines and angles, and the vast extents of country over which 
triangulations are being carried, make the consideration of 
even the smallest refinements not superfluous. 
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We shall now investigate briefly the nature of the geodetic 
line-as the shortest line--on the surface of an ellipsoid of 
revolution. Suppose the position of a point on the surface to 
be defined by its distance cmeasured from one of the poles 
along a meridian, and by its longitude o measured from a 
fixed meridian, then, r being the distance of the point from 
the tuis of revolution, the length of a curve traced on the 
surtice is 

s = f(rBdoZ+dp)*.  

This length is to be a minimum between the given ex- 
tremities. We shall most readily amve at  the characteristic 
of the curve by giving a variation lira, a function of I ,  to o. 
Thus. 

consequently, for the minimum, 
t8 d o  = Cds. (1) 

To fix our i h ,  let longitude be measured positively from 
weet to east, and azimuths from north through east round 
to north. Let a be the azimuth of the element d8 of the 
curve, then 

d s  cos a = -dc  
d s  sina = rdo,  

and the second of these substituted in the characteristic of 
minimum gives 

r h a =  C. 
If u be the reduced latitude, r = acosu, where a is the 

semiaxis major of the spheroid; and if utal be the initial 
values of 26 a at  the point A, say, then 

cosa sina = cosu, h a , .  (2) 
The relation here expressed is that which exists in a 

spherical triangle 116&, whose sides ere B& = 90"- u, ; and 
B& = 90'-r, and the angles opposite to them &11 = a,, and 
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&Bl= 180'-a Let the third side of this triangle be o, 
and the third angle & = w, then 

d o  cos a = dtc, 
d o  sin a = cos u dw. 

If $ be the latitude of a point on the geodetic 

sinu 
sin I# = 

(1 - ea cOsa u ) ~  ' 
I 

whence we obtain 
d a  = a(1-e9 ~os*u)fdu ,  (3) 

d o  = ( I  -ea cosa u)*dw. 

This completely determines the auxiliary spherical triangle, 
and through i t  the latitude and longitude of any point at 
a dietance a from B measured along a geodetic which has a 
given iuitial azimuth. The spherical triangle gives 

sin a sin a, COS w, - dw=do---- 
COB 1( COB' 11 

do, 

by which we may eliminate dw from the second of (3). If 
we omit the higher powers of e2, we have, on integrating this 
last-mentioned equation, 

Before applying these results to the calculation of distances 
we shall first trace the course of a geodetic line, joining two 
given points d B  on a spheroid, and in this process we shall 
omit the higher powers of ea. Let G be a point on the 
geodetic joining two points A and B. Let aa'be the distances 
of G and B from A, measured along the geodetic, o u' the 
corresponding values of u, ow' the longitudes of G and B, 
24u' their reduced latitudes. Let 6 be a point on the side 
IB of the auxiliary spherical triangle IB& corresponding to 
G, so that I6 = o, %B3 = d, 41&6 = m, %&B = ofJ 
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C& = go0-16, B& = 90"-1/ ; then we have the three follow- 
ing equations: 

. . 
sin u, = sin u, COB d + cos ut sin d cos a,, 

the last, by equation (9) page 42. Now from (4) 
ea 

= = a + - u  sinalcosul, 
2 

and if for convenience we write q, w,, u, for of-a, w'-w, 
4-a,  then 

es 
einw = sin@ + - u  sina,cosutcoso, 

2 
8 

sin w'= sin u' + - d sin a, cos U, cos o', 
2 

We have now to substitute these in the equation above 
which contains tan u. I f  a' be the azimuth of the geodetic 
at B, we have 

sin d cos a, = cos u, sin 26'-sin u, cos U' cos d, 
-sin d cos a' = cos u' sin u, - sin u' cos u, cos w', 

by means of which, and some obvious simplifications, we get 

aino'tanu = s ino  tanu8+sino, tsnu, (5) 

Take now, as at  page 114, an auxiliary spherical triangle 
ABC corresponding p i n t  for point with ABC and %ME, so 
that BC= 90"-d, AC= 90"-u,, ACB= o'; on AB take G, 
such that ACG = o, GCB = a,, then if CG = 90"-u,, 

sin $ tan u, = tan u' sin (D + tan u, sin w,, ( 6 )  

as a t  the page above referred to ; 16, is the same in both cases 
on the supposition of A B  being the same points in the one case 
as in the other, the intermediate point being also the same. 
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Now since e4 is to  be neglected, we may put within the paren- 
thesis in (5) 

cos u, sin u, 
sin 0, = sin a' 

cos u sin d ' 
cos u' sin o 

sin o = sin o' 
coslc sin d' 

After making this substitution, taking the difference of (5) 
and (6),  and putting tan v-tanu,, = (u-fl,) seca u, we get 
finally 

e4 u sin u, 
%-No = - COB% (- 

2 
C08 U ,  COS a, sin d 

IT, sin a -- cos u' cos a'). (7) sin d 

To compare this with the equations at  page 11 5 ; the points 
AB we are now dealing with are to be considered the same 
as the points AB of that investigation, and our present point 
G is on the same meridian with P ,  L and Q, thus the c c'c, of 
those formuls correspond respectively with d u , a  of (7), and 
we know fully the course of the geodetic compared with 
either the plane curves or the curve of alignment. From the 
last equation written down and (1 9) we get for the distance of 
G north of P,' 

u,sin u 
cos COB a, - - cos U' cos a' sin d 

= 61 
4 sin - sin - 

- 2 2 
d s h u t  . 

COB - 
2 1 

We may alter the form of this by eliminating a' through the 
equation 

-COB U' COB a' = sin u, sin o'-cos u, cos u' cos a,, 
thus getting 

ea PB = a-cosx (HCOSU, cosa,+Keinu,), 
2 (8) 

See PhilorophiacrZ Magazine, May, 1870. 'On the ooum of geodetic lime 
on the earth's surface,' by Captain Clarke, R.E., h m  which much of this 
chapter ia t a k a  
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where 
usin a, u, ein u H=--- 
sin d tan U' ' 

0 = I  sin - sin - 
K =  u,sinu- 4 

2 2 
I 

1Z 

I f  we desire to trace the course of a geodetic line, not ae 
passing through two given points, but as starting from a 
point A .in a given azimuth, we may refer its different 
points to the corresponding points of the curve of inter- 
section of the vertical plane at  A which touches the geodetic at  
that point. I n  order to do this we must put in (8) d-u= ut , 
and in the result put d=O, making the point B move up 
to A along the geodetic. The result of this operation is 

u - (u-2 tan?) sin ul , 1 
where, with respect to the sign of PG,  i t  is to be remembered 
that P G  = a (u- U,). From this we can readily infer the 
following : if A be the true azimuth st B of B, a, the azimuth 
of the geodetic to B a t  A, a the azimuth a t  B, 

P G  sina A-a, = - - - 
a sin u 

8 v = -cost~,sina,{(1 2 - - ) I X S ~ , C O S ~ ,  
tan u 

a formula which is given by Besael in the AstronomiscrZe Nick- 
rickten, Nos. 3 and 330. 

We infer from thi8 formula, that the azimuth of the 
geodetic is equal to the true azimuth when the following 
condition exists : 
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When u is small, then approximately 

e4 u8 
A - a , = - ~ o s ~ , s i n a ~  u2cosu,cosal-- 

6 4 
sin *). (12) 

8. 
Let us now wnsider the case of geodetic lines starting 

from a point on a spheroid of small excentricity and diverging 
in all directions. First to confine our attention to a single 
line, i t  is well known, and may be inferred from the 
auxiliary spherical triangle, that a geodetic touches alter- 
nately two parallels equidistant from the poles-the differ- 
ence of longitude between the successive points of contact 
being constant, and something less, than 180" depending 
on the angle at  which it cuts the equator. Now suppose a 
line starting from a point on the equator with azimuth a, 
the osculating plane at that point cuts the equator again 
a t  the opposite point N. As a point P moves along the 
geodetic t o w a h  N, the angle m of the auxiliary spherical 
triangle incresses from 0, and when i t  becomes n then a 

also becomes = n, and P has reached the equator, its longitude 
being n- f e2 n sin a. Since, in (9), o cot u- 1 ia negative 
for all values of u from 0 to r, the geodetic lies wholly on 
the south side of the osculating plane at  the initial point, , 
if we suppose a <  90°, and its distance south when a = u 
and P is on the equator is t n 8  cos a. We infer from this 
that all geodetics proceeding from the mme poiut on the 
equator have an approximately equal length 4 n8---about 
36' in the case of the earth-intercepted between the 
meridian through N and the equator. Consequently, the 
ultimate intersections of the geodetics will form an envelope 
likc the evolute of an ellipse or the hypocycloid 

x) +Y) = kt, 
N being the centre of the curve. If geodetic Iines start- 
ing from a given point intersect so as to form an envelope, 
then each line is a shortest one only up to its point of wntsct 
with the envelope and no further (Jacobi : Porksuyen Jber 
Dy~tamik, Berlin, 1866). If the lines diverge from a point 
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not on the equator, but in latitude u, the diameter of the 
envelope will vary aa cosa u. 

I n  the case of a geodetic joining two points which are a 
short distance apart, the line will generally lie between the 
plane curves, and neglecting quantities of the order e2 u4 it is 
easy to  see from what precedes that 

so that the geodetic divides the angle at  P into parts in the 
proportion of 1 : 2, and the angle a t  Q into parts in the ratio 
of 2 : 1. If, however, we take in quantities of a higher order 
we find that the curve under some circumstances, namely, 
when the terminal stations are nearly in the same latitude, 
crosses one of the plane curves. To determine the condition 
of crossing we must make the expression for PQ in (8) vanish, 

I? K 
thus, --- cot u, cos a, + - = 0 gives the condition of the 

01 lJ Ul 

geodetic crossing the plane curve which contains the normal 
H K 

at A. I n  the expressions for - and. - ,. substitute for the 
fl '=I " UI 

sines and cosines their expansions in series, and the condition 
of crossing becomes 

(u+u') cotu, cosa, = $ ( ~ + + u u ~ + d ~ )  
+r+a(~4+09d-02da+~d3+~'4). (13) 

If the crowing be indefinitely near A we must here put u=O, 
which gives 

d n '2 
cotulmsa, = -(I + so). 

4 

If the crossing be very near B we must put a=d, 

Now laying wide for a moment the consideration of the earth 
being non-spherical, that is, wpposing e= 0 drop a perpen- 
dicular from the pole C on the arc AB, and let i t  meet AB 
in 8 between A and By and let AS=iAB, then, by spherical 

K 2 
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trigonometry, cot u, cos a, = tan id= i d + + ia uQ. Supposing 
then o to be very small, in order that the geodetic may cross the 
northern curve, AS must be between ) BB and $ AB, A being 
under these circumstances the northernmost of the two 
terminal stations. The limits of azimuth under which crow- 
ing takes place are therefore very small. 

Supposing the case in which the points A, B are on the 
same parallel of latitude, let L be the point on the curve of 
alignment, which is on the same meridian as G on the geo- 
detic, then when u' is small 

a e4 
PL = - 2 ats COB u sin u,, 

4 

a e2 PG = --- oo, (a2 + 3 ua, + o,2) cos u sin u,, 
24  

and in the middle part of the arc, the geodetic lies between 
the &incident plane curves and the curve of alignment. 

Let us now determine the difference in length between the 
geodetic and the other curves in the case of a short line : and 
first between the geodetic and the curve P.- Let 8% be the 
difference of latitude of the corresponding points G and P of 
these curves, G being north of P by the distance a6u. 
Draw an arc of parallel through G, meeting the plane curve 
in the point R east of G, then the difference of longitude of 
R and G is b0=6u tan a see 26, and we may mppose all the 
points of the plane curve to be refelled in this manner to the 
geodetic. Now when o is increased by 60 

is increased by 
d o  d b o  d 6 o  2 $ d p  rp 

the first term of which when integrated is, by reason of the 
character of the geodetic, zero. Hence the increment of 
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length in passing from the geodetic to the plane curve is, 
since dumsa = - d l  

and as we require merely the first or principal term in the 
value of 8.9, we may put d l  = - adu, and so 

d b o  
88 = k a cos2 u cos3 .Ax) d ~ .  

Let the whole length of the line be c, the distance of G from 
the initial point A being as before=u. Now, omitting small 
quantities of the fourth order, the equation (8) gives 

whence we have 
8 w  = $e2u(2-u2)sinacosz~, 

d b o  d?io 
and ( ~ ) ~ ~ = ( ; i ; ; )  

This gives an approximation to the truth, only when the 
distance c is not very large. The coefficient &, ae4 is only 
2.66 feet: and if c were for instance lo0, the maximum value 
of 88  mould be less than a hundredth of an inch. For the 
curve of alignment, the difference of length between i t  and 
the geodetic is obtained by putting 

80  = %e2m (c-u) (20-c)sina, cosu,, 
a ~ ~ d  by the same process as before, we get 

which is one-fourth part of the difference in the case of the 
plane curve. 

The difference of length of the two plane curves is of a 
higher order. 

Beslrel, Astron. Nachr., No. 330, p. 185. The demonetration is not given. 
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From the expression (1 2) we can compare the angles of a 
geodetic triangle on a spheroid with the true spheroidal 
angles. Let ABC be the triangle, its sides being a, 6, c :  

measuring the azimuths consecutively from 0" to 360°, let 
the true and geodetic azimuths of C a t  B, A at  C, B a t  A be 
(a), (P) ,  (Y) and a, 8 ,  y respectively: and denote the reverse 
azimuths of B at  C, C at A, A at  B by (a,), (@,), (y,) for 
the true, a, 8, y, for the geodetic azimuths. We propose 
to retain only the part of (12) depending on us, omitting 
the smaller term. In doing this we become at  the same 
time at  liberty to put for COG a, (which varies from point 
to point of the triangle), cos2 u where u refers to the centre 
say of the triangle; and in the factor ain 2 a, we need not 
distinguish between the direct and reverse azimuth of the 
sides of the triangle. Thus, we get, putting i = & e2 cos2 u, 

(a) = a  +ia2sin2a,  
(a,) = a, + iaa sin2 a, 

(8) =/3 + i P s i n 2 p ,  

(8,) = PI + i b2 sin 2 p, 
(y) = y +ic2sin2y, 
(Y,) = yl+ i Ce sin 2 y. 

Thus the true angles of the triangle are 

A = (8,)-(y) = PI-y +i(ha sin 2P-c1 sin 2y), 
B = (y,)-(a) = y , - a + i ( ~ ~ s i n 2 ~ - a ~ s i n 2 a ) ,  

C =  (a,)-(@) = a,-P+i(a2sin2a-b2sin2/i?). 

Now, at  page 121, we have brought out the differences 
between the true angles of a spheroidal triangle and the angles 
of a spherical triangle with the same sides-the radius of the 
sphere corresponding to the mean measure of curvature of the 
triangle; and it appears on a comparison of these results 
that the angles of the geodetic triangle are equal respectively 
to those of the spherical triangle, to quantities of the order 
i ae. 
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It mill be interesting here to compute some actual nume- 
rical examples of the course of geodetic lines. Take for the 
elements of the spheroid a= 20926060, a : l =  295 : 294, which 
give log  4 aea=4-8501 3. We shall first take the geodetic 
line joining the Kurrachee base line in the West of India 
with the Calcutta base line. The approximate latitudes are 
Kurrachee 25" o', Calcutta 22' SO', and the difference of longi- 
tude 2 lo 10'. From these we obtain, u being the entire 
distance and u the latitude of the middle point, 

Now, at the middle point of the arc, the value of PG-which 
is the distance of the geodetic north of the plane which is 
vertical a t  Calcutta and passes through Kurrachee-is 

which gives 46.6 feet as the distance of the geodetic north of 
the plane curve. The differences of the azimuth8 of the geo- 
detic from those of the vertical planes are, at Calcutta 3".76, 
and at  Kurrachee 2"-04. 

As a second example, take the line joining the Cathedral of 
Bordeaux in latitude 44O50'20" with the observatory at 
Nicolaeff in latitude 46"58'20r'; the spherical distance of 
these points being 22" 35' 30". By spherical trigonometry 
we get at  Bordeaux the azimuth of Nicolaeff= 72' 55' 7", and 
at  Nicolaeff the azimuth of (i.e. the angle between the north 
meridian and) Bordeaux= 83" 23' 14". Take Bordeaux as the 
initial point, and let the whole distance be divided into ten 
equal parts, and through each point of division let a portion 
of a meridian line be drawn intersecting the plane curves P ,  Q, 
and the geodetic. The formerplane curve is that which is 
formed by the plane containing the vertical at Bordeaux, 
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and i t  lies entirely to  the south of Q, that is, between the 
terminal points. We have also included in the calculation 
the curve of alignment, intersecting each meridian PQ in the 
point L as the geodetic intersects i t  in G :  thus the relative 
course of these two lines will be seen. The first column of 
the following table contains the successive distances of the 
intermediate points from Bordeaux :- 

Here both the geodetic and the curve of alignment cross 
to the north side of the curve Q : the geodetic departing but 
very slightly to the north. I n  fact the azimuth of the geo- 
detic at  Nicolaeff differs from the true azimuth by only 
0 ~ ~ 1 6 2  by the formula (10). For here the condition ehown in 
equation (1 1) is very nearly fulfilled. 

We may determine the point of intersection of the geodetic 
with Q from the equat'on (13) ; for the whole distance being 
c, and xc the distance of the crossing from Nicolaeff, that 
equation becomes 

3 0 30 120cosa 
x4+x~+es(-- - I) + (z+ l ) ( l +  -$-- 

d~ I? -)= tann 0; 

o, 

0 8 ,  

0 0 0 

a 15 33 
4 31 6 
6 46 39 
9 a 12 

1 1  17 45 
13 33 18 
I5 48 51 
18 4 a4 
ao 19 57 
aa  35 30 

or numerically, a and v applying to Nicolaeff 

0 , , 
44 50 10 
45 a 7  41 
45 59 58 
46 a6 58 

46 48 33 
47 4 32 
47 14 51 
47 I9 23 
47 18 8 
47 11 6 
46 58 a 0  

Q 
Nos= 

OP P 
- 

ft. 
0.0 

18.26 

32.19 
41.93 
47.62 
49.36 
47.23 
41.25 
31.42 
17.70 
0.0 

L 
NORTB 

OF P 
- 

ft. 
0.0 

5.40 
17.66 
31.80 

44.04 
51.71 
53.19 
47 8s 
36.17 
19.4' 
0.0 

G 
NOBTE 

OP P 
- 

ft. 
0-0 

14.00 

26.55 
36.70 
43.77 
47.20 
46.54 
41.57 
32.13 
18.24 
0.0 

L 
NOBFB 

OF a 
- 

ft. 
0.0 

- 8.60 
- 8.87 
- 4.90 
+ 0.17 
+ 4.51 
+ 6.65 
+ 6.31 
+ 404 
+ 1.18 
0.0 

Q 
N O B ~  
or Q 

-. - - 

ft. 
0.0 

- 4.a6 
- 5.66 
- 5.13 
- 3.85 
- 1.16 
- 0.69 
+ 0.32 
+ 0.71 
+ 0.54 
0.0 
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the appropriate root of which is x=.338: this agrees with 
the last column of the table above, which by interpolation, 
gives x= -339. 

In  the accompanying figure drawn to illustrate this case, 

Fig. 24. 

the plane curves are indicated by fine lines, the geodetic by a 
firm line, and the curve of alignment is dotted. 

8. 
We proceed next to the consideration of the following pro- 

blem. A geodetic starts from a station 8, in a direction 
initially a t  right angles to the meridian there, the latitude of 
A being given i t  is required to determine the latitude and 
longitude of any point on the geodetic whose distance from 
A measured along that curve, is given. Let U be the reduced 
latitude of 8; u that of a point B on the geodetic whose 
distance from A is s ; o the longitude of B. In  this case the 
auxiliary triangle is right-angled, the sides containing the 
right angle are 90"- Uand u, the third side is 90"-u, and 
the two other angles are tz and a. Hence sin u= sin Ucos u 
and the equations (3) become 

s = a ( I  - ea + e2 sin2, u cos2 0 ) )  du, J (15) 

cos U du 
.-a - e g  ws2u)i- 1) ----. 

c0S2 U 

Now put 

then the first equation may be put in the form 
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but we have 
(1-Psin20)*= 1 - f k 2 s i n ~ ~ - ~ r E l s i n ~ o - ~ ~ k s s i ~ ~ ~ a -  ..., 

sin2 cr = f - cos 2a, 
s in40=  8 - 4 c o s 2 o + ~ c o s 4 o ,  
sin6 o = ~ T - + ~ ~ ~ s 2 0 + , 8 , ~ 0 8 4 u - ~ x  C O S ~ U ;  

whence, putting 

A =  1 + $ k 2 +  $2 k4+ y':r k6, [I 8) 
B =  +k2+&k4+; ,0 ,k6 ,  
C= &s k4 + A k6, 
D =  TAT k6, 

there results 

consequently, integrating from o = 0, 

and reversing this series we get u in terms of 8. Thus, from 
the two sides, a, 90" - U of the spherical triangle, we can 
compute the other angles w and a. In  order to obtain w from 
a, we must develope the second of equations (15). Expand- 
ing the radical, we get 

substituting here for cos2u its value I-sin2 Ucos2a, and 
reducing, there is no di5culty in arriving at  the following 
equation : 

where 
A'= 1 + i e a + + e 4 - + P -  p, (21) 
R =  +k=+ $5 k4, 
C'= 14s k4. 

This completes the determination of a. 

8. 
The results we have just obtained enable us to solve the 
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more general problem : a geodetic starts from a given point 
A, whose reduced latitude is u,, in a given initial azimuth a,, 
to determine the latitude and longitude of a point B on the 1 geodetic whose distance from A measured along that curve 
is s. In the solution of this problem we shall omit the terms 
in ee as unnecessary for our purpose. Let P H K  be the 
auxiliary triangle, P corresponding 
to the pole; 8 ,  K, to A and B 
respectively, so that PB= 90"-u,, 
P H K  = a, . Drop the perpendi- 
cular P M  on HK, produced if 
necessary, and let 

PH=90°-U,  H M = X ,  
PK=90°-U, B K = u ,  H 

Fig. 25. 

H P K  = ur, P K M  = a. 

Then we have from the right-angled triangle P H N ,  

sin u, = sin U cos X, 

cos a, cos u, = sin U sin X, 
sin a, cos u, = cos U ; 

whence U and 2 are obtained with a check. Now as s cor- 
responds to m, so let S be the linear distance which corresponds 
to 2, then by (19) since K H z  X-u, 

8 . . - = Au+Bcos(2X-a) sing 
a J 1 - 8  

-Ccos(4X-2u) sin 2a. (22) 

By reversion of this series, u becomes known, and then by 
the solution of the spherical triangle P H K  having given the 
sides HK, LIP, and the angle H, the third side PK = 90"-u 
becomes known, and the angles tz and a. The value of o 
follows from (20) in the following manner : first, in the right 
hand member of this equation put B for u ;  secondly, write 
Z-a for o, subtract the second result from the first, then we 
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have the o-ar of our present problem expressed thus 

ea 
a-w=--cosU{A'u-B'cos(2Z-u)sinu), (23) 

2 
where the values of A', B', are as given in (21). 

We shall now give the working in full of the following 
numerical example. Given the latitude of the centre of the 
Tower of Dunkirk 51" 2' 8".4 1 as determined by observations 
with Ramsden's Zenith Sector; the latitude of the vane of 
the Munster Tower of Strasburg Cathedral 48" 34' 55".94, 
and the difference of longitude of these points ( A n n u h  & 
robservatoire Imperial cle Paria, Tome VIII,  pp. 256, 320, 
356) 5' 22' 28".440 ; to determine the shortest distance 
between them, and their mutual azimuths. We take the 
elements of the spheroid, a = 20926060, b:a = 294 : 295, - 

whence 
log eZ = 7.8304712, 

Using onIy seven place logarithms, we shall omit the terms in 
k6. It is unnecessary to give the calculation for determining 
the reduced latitudes of the stations, they are found to be 

u, = 60' 56' 25"-837, log COSU, = 9.7994281, 
u' = 48 29 8 -406, log cos a' = 9.8213873, 

also, a = 5 22 28 -440, log sin o = 8.9715838. 

In the auxiliary triangle whose sidw are 90'-u, 90'-d, the 
included angle is a-of which an approximate value is a, t.he 
true difference of longitude-and the third side u. The other 
two angles are the azimuths of the geodetic line a t  the 
terminal stations. If 90'- U be a perpendicular dropped on 
t,he side u from the opposite angle, and Z the distance from 
the point U, to the foot of this perpendicular, 

sin u cos U = cos u, cos d sin w, 

cosZ sin U = sin u, ; 
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put now 
ea sin% U 

I ? = +  
1-8 c o s ~ u '  

then a being the shortest distance required, 

The calculation is indirect : we require u, but 

therefore we must first obtain a ; and this implies the know- 
ledge of a, we therefore adopt the method of approximation. 
Let .trl be the first approximation to w, so that tr, = o+ dw, 
where 

d o = -  ' ( - . ) COB r, cos u' sin a, 
sin 2" sin uo 

cos uo = sin u, sin u'+ cos u, cos u' cos w. 

If a, be a first approximation to a, such that 

cos ul = sin a, sin oc'+ cos u, cos u' cos a,, 

then subtracting this equation from the preceding, we have 

u,- uo = d o  cos u, cos u' sin o c o w  ao. 

I n  calculating d o  we may put for the fraction uo+ sin uo 
its approximate equivalent seci no. It is unnecessary to give 
the calculation of go, the m u l t  is 

u,, = 4' 15' 11"-2, log ein u, = 843701852, 

and the remainder of the work proceeds thus 

log WC* uo 0.00040 
log e8 cosec 2" 2.84387 
logcosu,cosdsino 8.59240 
d o  = 27".33 1.43667 
log COMC uo 1.12981 
q-U, = 14".41 1.15888 
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whence ml = 5' 22' 55".77 and vl = 4" 15' 25"-6. From these 
we get U and K with sufficient approximation, 

~ogcosu,cosu'  9.6208154, 
~ o g s i n w l c o s e c v ~  0.1016022, 
log Cos u 9.72241 76, 
log sin U 9.9291 162, 
log f e2 sin2 U 7.0866436, 
log (1 + e2 cosZ U) 0.00081 79, 
log K' 7.0874615. 

The value of X from the equation cos X sin U = sin u, is 
2 = - 23' 54' 4V.3 ; it is negative because the perpendicular 
U falls on the opposite side of Dunkirk to that in which 
Strasburg lies. Hence, log cos (2 X - v,) = 9.78851 93. Then 
to get w from (25) the work stands thus, putting for a 
moment N for Z cos u, cos 71' sin m1 cosec 2", 

log N 1.436877 ... ... ... ... 1.4369, 
log sec* ul 0.000400 cos (22-a) 9.7885, 
+27".3701 1.437277 a K~ 6.7864, 
log () e2-4 r2) 7.03362 -.0103 8.0118, 
+ ON.0296 8.47090 

W e  have now to compute the third side and remaining 
angles of the spherical triangle whose sides are complements 
of u, and u', and P the included angle. The most correct 
way of determining the angles is by computing the tangents 
of half their sum and half their difference, thus we obtain the 
azimuths 

Strasburg a t  Dunkirk . . . 123' 7' 20"-4 1, 
Dunkirk a t  Strasburg . . . 52 46 11 -46 ; 

the last being measured in the direction north towards west. 
To determine the third side v, we might proceed in different 
mays, but owing to the uncertainties of the seventh place of 
the resulting logarithm there will remain an uncertainty 
of between two and three units in the third decimal of the 
seconds. The value as far as seven-place logarithms can 
give it, is 

u = 4' 15' 25".710. 
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There remains no di6culty in computing the length a 
from the  formula (25) as we are in possession of all the 
necessary logarithms. We shall therefore merely give the 
values of the parts of the different terms depending on the 
different powers of u :- 

The sum of these gives s = 1552630.4 with an uncertainty 
of one or two units in the place of decimals. The true 
distance is 1552630.300. The astronomical azimuths (com- 
puted with precision) are 

Strseburg at  Dunkirk ... 123' 7' 20".165, 
Dunkirk at  Strasburg ... 52 46 11 -725. 

If now by the formula (12), page 130, we compute the 
differences between the true and geodetic azimuths, we find 
that to reduce the former to the latter the corrections + 0"-24 
and -0".26 are to be applied. Adding these we get a b i n  
the geodetic azimuths as before. 

k u s  IN 

KQ 

2 
K' 

11. 
In  the particular manner in which we have deduced the 

equation of the geodetic line, there i ~ ,  this diaadvantage that we 
have lost sight of one of its principal characteristics. Let p, p 
be adjacent points on a curved surface; through a the middle 
point of the chord pp imagine a plane drawn perpendicular 
to pq, and let S be any point in the intersection of this plane 
with the surface. Then pS+Sp is evidently least when s S  
is a minimum, that is, when eS is a normal to the surface ; 
hence i t  follows, that of all pIane curves joining pp, when 
those points are indefinitely near to one another, that is, the 
shortest which ie made by the normal plane. That is to say, 

u 

R. 
1549559.6 

1895.27 
7.54 

& a  

ft . 
...... 
I 163.56 

4 2 7  

sin au 

R. 
...... 
...... 

0.14 
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the osculating plane at  any poiut of a geodetic line on a 
curved surface contains the normal to the surface at  that 
point. 

Imagine now three points in space, A, By C such that 
A B = BC = c ; let the direction-cosines of &B be I, m, n, of 
BC be r, m', n', then x, y, z being the coordinates of B, those 
of A and C will be respectively 

and consequently, the coordinates of M, the middle point of 
AC are 

therefore the projections of BM on the coordinate planes are 

and the direction-cosine of BM are proportional to I-2, 
d-m, n'-n. If the angle made by BC with AB be in- 
definitely small, then the direction-cosines of BM are pro- 
portional to 81, 8m, 8 a. Now if A B, BC be considered two 
contiguous elements of a geodetic curve, then B M must be a 
normal to the SUI-face, and since bl, baa, 8% are in this case 
represented by 

we have, if u = 0 be the equation of the sur6rce, 
d2x dax dex 

I n  the case of fhe ellipsoid 

the equstiona of the geodetic line are 



GEODETIC LINES. 

For the spheroid, where a = 6, 

I This being inkgrated giveo 
y d o - x d y  = Cds, 

I which leads to the equation # d o  = Cd3 as before. 
The t w o  equations (26) are equivalent to one only, for of 

its three membem any one can be deduced from the other 
I 

two by means of the equatione 

I On the wbject of thii chapter, w an inbrasting paper: - 
&us &a Gcasts 02 la Zigne gkodiiique et des sections phnes nor- 
n u z k  mtre dew poinlr rawa,AA Buae m f m  cmr6e, par 
B. J .  Van den Berg (Eztrait des Archives Nd"erlandaweu, t. xii). 



CHAPTER VII. 

HEASUREMENT OF BASE-LINES. 

TEE Geodetic Standards of length of different countries 
vary in length, in form, and in the material of which they 
are composed. They are divided into two clseees, standards 

B traits ' and standards ' B bouts '; in the first, the lines or 
dots defining the measure are engraved on small disks of 
silver, platinum, or gold let into the bar ; in the second, the 
bar generally has its extremities in the form of a small 
cylinder presenting a circular disk, either plane or convex, 
of hard polished metal, or sometimes of agate, for the contact 
measurements. 

The unit of length, in which by far the greater part of the 
geodetical measurements in Europe are expressed, is the To& 
of P m ,  a measure, 'B  bouts,' of which fortunately there exist 
two copies (compared with the original and certified by Amp), 
one made for Struve in 182 1, and a second for Besael in 1823 ; 
it has moreover a third representative in Borda's Rod, No. 1. 
The Standards of Belgium and Pruseia are copies of the toise 
of Bessel ; and the Russian Standard, which is two toises in 
length, is menenred from the toise of Struve. The Standard 
of the Ordnance Survey is ten feet in length and in eection 
a rectangle of an inch and a half in breadth by two and a 
half in depth, supported on rollers at  ) and of its length. 
The ends of the bar are cut away to half its depth, so 
that the dots marking the measure of ten feet are in the 
neutral axis. The standard yard of this country and its copies 
are bars, an inch square in section, of iron, steel, brass, or 
copper; the lines defining the yard being in the axis of the 
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bar. The Standard of the Spanish Geodetical Survey is a bar 
of four m e h  in length, constructed of two plates of iron 
rivetted together in the form of a I. The defining Lines are 
on the npper edge of the vertical bar. 

Standards of length are generally provided with thermo- 
meters which either lie in contact with the metal or have 
their bulbs bent downwarde so as to enter into cylindrical holes 
in the upper &e of the bar. It is necessary that the errors 
of these thermometers be known with considerable accuracy, for 
an error of a tenth of a degree of temperature corresponds to 
en error of nearly a millionth of the length of an iron bar 
and quite that amount in a bronze bar ; i t  is therefore neces- 
my that the ei-ror be less than, say, 0904. Thew thermo- 
meters are compared with standard thermometers from time 
to time. A standard thermometer for geodetic purpoees must 
be the best workmanship of the best workman, and the residual 
errors of the division-lines have to be determined from special 
observations and measurements. These consist in, the deter- 
mination of the boiling point, that also of the freezing point, 
the determination of the errors of calibration, end finally, the 
comparisons together of the standards after the application of 
the corrections which shall have resulted from the foregoing 
operations. As all thermometers have an index error which 
is liable to slow variations in the course of time, it is neceamy 
frequently to redetermine the freezing point by placing the 
thermometer in broken ice. A convenient method of pre- 
paring the ice is to plane i t  from a block with a rough plane. 

In  the comparisons of thermometers with one another i t  is 
essential that they be held in water. I n  the comparisons a t  
Southampton the thermometers are carried on a small plat- 
form of perforated zinc in the middle of a rectangular vessel 
measuring 16 inches square by 36 inches in length, thus 
the thermometers are covered with about seven inches of water 
when under comparison. There is a piece of mechanism for 
agitating the water throughout its mass at  intervals, so as 
to prevent any local cooling. The thermometers, lying hori- 
zontally, are read by a vertical micrometer microscope from 
above. 

It may be interesting to give here the results of comparisoui 
L 2 
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of two important standard thermometers; one is that on 
which depend all the comparisons of standards made a t  
Southampton, the other is a standard used for similar purposes 
in India. An examination of the boiling and freezing pointa 
of these thermometers made at  the time of the comparisons 
show that the former requires the correction - oO.olo (t- 32") 
-0"-41 where t is the thermometer reading, and the latter 
- 0".010 (1- 32"). The calibration corrections given in the 
second and fifth columns result from a large number of micro- 
meter measurements of the capacities of the different portions 
of the tubes. The first and fourth columns contain each the 
mean of five simultaneous readings of the thermometers in 
water ; the room in which the comparisons were made having 
been kept at  a temperature not differing more than a couple 
of degrees from that of the water. 

The 'apparent error' in the third and sixth columns is the 
difference between the individual readings after correction 
and their mean. 

The standards when boiled were kept in a horizontal 
position. If T be the reading of the thermometer, B that of 
the barometer (reduced to 32") at  the same moment, then the 
error E of the boiling point is 

E = T-212"+ 1.680 (B-B), 
where B is Laplace's standard atmospheric pressure, namely in 

ORDNANCE SUBVEY STANDARD. Imux SURVEI S T ~ A ~ .  

Reeding. 

0 

97.84 
92.58 
87.61 
8a.72 
77.91 
72.56 
67.70 
62.64 
57.95 
51.63 

Reding. 

0 

97.46 
92.11 
87.15 
8 a . a ~  
77.43 
71.03 
67.17 
62.15 
57.48 
5a.ao 

Cal. Corr. 

0 - 0.031 
- 0.062 
- 0.039 
- 0 9 5  
- 0.1 16 - 0.106 
- 0.083 - 0.068 - 0.059 
- 0.041 

Cal. Corr. 

0 - 0.073 
- 0.005 
-0.OIa 
- ooao 
- 0 . 0 ~  

+ 0046 
+ 0.019 
+ 0.035 
+ o.oj6 
+ 0.016 

App. Error. 

0 

+ 0.005 
oaoo 

+ 0.010 

- 0.005 
o.ooo 

- 0015 
+ 0.010 

- 0.005 
- 0.015 
- ooao 

App. Error. 

0 - 0905 
QOOQ - 0010 

+ 0905 
OQOO 

+ 0.015 
- 0.010 

+ 0.005 
+ 0.015 
+ 0.020 



latitude 9, and a t  the height of b feet above the aea, 
ls = 29.9215 in.+ -0785 cos 2++ -0000018 b. 

This is 0.760 of a metre in the latitude of 45' or 30.000 inches 
at the equator ; in either case at  the level of the sea. A few 
minub-after  boiling, the thermometers are placed in ice for 
the determination of the index error. 

Bu t  it is not sufficient to define a measure as the distance 
between two marks on the upper surface of a bar of metal a t  a 
given temperature, for the bar is not a rigid but an elastic 
body, which changes its form according to the manner in  
which it is supported. If an uniform elastic rod be supported 
at  its centre in a horizontal position, the whole of the material 
above the 'neutral axis' is in a state of tension, while the 
lower half is compressed ; and an exactly opposite state ex& 
if the rod is supported at  its ends. Suppose the bar to be of 
length a, and its section a rectangle of breadth A and depth k : 
let w be its weight, and a the small quantity by which the bar 
would be either lengthened or shortened by an extending or 
compressing force equal to no. Then, supposing the bar to be 
in its unconstrained state perfectly straight, if p be the radius 
of curvature of the axis at  any point p when the bar is slightly 
bent in the plane of k, the sum of the moments of the elastic 
forces developed in the transverse section of the bar at  that - 

w a P  
point may be shown to be equal to - and this must 

l 2 a p  
be equal to the sum of the moments of the external forces 
tending to bend 
the bar round p. A C B 

Let P, P' be the 
P 4 P 

Fig 16. 
points of support 
of the rod a t  the distances 8, Y from C, the middle point of AB. 
Let the equation of the rod, or of its axis rather, be expressed 
in rectangular coordinates x, y, the axis of x passing through 
the points of support, and a = 0 corresponding to the point C. 
Now the external forces tending to bend pB round q are its 
own weight and the reaction of the support at  I", and the 
sum of the moments of these forces is 

bur -- w 
- a+a,(g-")-- 2 a (4 a - x)~.  



Hence, the condition of equilibrium is 

It is easy to see from this that there can be no points of 
inflection unless b + 6' > 4 a. That is, unlese the supports are 
further apart than half the length, the whole ba r  will be 
convex upwards. This equation however does not refer to 
the F B  of the bar- for that portion we find 

Now since the flexure of the bar is really very small, we 
dy4 1 f ly  6 a may omit - and putting - = - snd p = - , the above 
d 3  p daa ak2 

equations become 

from whence we obtain by two integration0 the equation of 
the axis. 

The distance between two points on the upper surf' of 
the bar a t  its extremities will be variable, not only from the 
curvature of the neutral axis shortening its horizontal pro- 
jection, but from the compression of extension of the upper 
surface. The change of length arimng from the first is 
generally quite inappreciable, that from the second is large, a 
source of error unless guarded against. Imagine normals 
drawn a t  A, C, and B to the axis of the bar in its vertical 
plane, the angle between the normals at  C and B--sup 
posed to converge upwardhbeing 6, and let 8' be the angle 
between the normals a t  B and C, then the points on the npper 
surface have been drawn together by the amount 4 k (6+6'). 
Now 

n 

- bb' a4 - 8 ' - -  
b+b' 24' 
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with a similar expression for 9'; t h w  the contraction of the 

I upper surface is, if we put aa = kc, 

For a bar supported a t  its centre 6 = b'= 0, and the snrfnce 
is exi!en&d to the amount f t. For s bar supported a t  ita 
extremities the is f t, being double the amount of 
the extension in the previous case. If  supported on rollere 
at  one-fourth and thresfourt,h of ita length, the npper surface 
is extended r', c. But if we place the supports so that 

the distance between the extreme marks on the npper surftux 
will be the same as if the bar were straight ; a particular case of 
a more general theorem due to the Astronomer Royal (Mnroirr 
of ike Royal Astrmomical Society, vol. xv). 

The variations of length to which the npper surface of a 
bar is thus liable have given rise to the practice of engraving 
the lines indicating the measure on surfaces (gold, silver, or 
platinum disks) in the neutral axis. 

At the Ordnance Sumey Office, Southampton, i a building 
specially constructed for comparisons of standards. The inner 
mom, measuring 20 feet by 11, with thick double walls, is 
half sunk below the level of the ground, and is roofed with 
9 inches of concrete. An outer building entirely encloses and 
protects the room from external changes of temperature ; so that 
diurnal variations are not aensible in the interior. Along 
one wall of the room are three massive stone piers on deep 
foundations of brickwork; the upper surfaces of these stones 
(which are 44 feet above the flooring on which the observer 
stands) carry the heavy cast-iron blocks which-projecting 
some seven inches to the front over the stones-hold in 
vertical positions the micrometer microscopes under which 
the bars are brought for comparison. Each micrometer micro- 
scope is furnished with an affixed level for making ita axis 
vertical ; one divieion of the micrometer is somewhat less than 
the millionth of a yard. 

It is a most essential point in the construction that the 



152 MEASUREMENT OF BABE-LINES. 

foundations which carry the stone piers-the supporte of the 
bars under observation-and the flooring on which the ob- 
server stands, are aeprate; thus, no movement made by the 
observer commu~cates any motion either to the bars or to 
the microscopes. 

The illumination of the disks (on the bar) which bear the 
lines or dots indicating the measure, is effected by the light 
of a candle placed some ten inches behind each microscope: 
the light of the candle paeses through a large lens which 
forms an image of the flame on the disk, giving abundant 
illumination with a mininium of h a t .  

When two bars are to be compared they are placed generally 
in the same box side by side and close together; each bar 
rests immediately on rollers to which a fine vertical movement 
can be communicated. The b t  adjustment is to level one of 
the barn and bring the microscopes over the terminal dots ; 
the microscopes are then made truly vertical, brought per- 
fectly to focus, with the collimation axie closely over the dots. 
It is usual to arrange a pair of bars at  least twenty-four hours 
before any comparisons arc made, so that a steady equality of 
temperatnre may have been obtained. The bars are visited 
for the purpose of comparison three or four times a day ; all 
adjustments are frequently put out and renewed, and the bars 
themselves are made to interchange places so as to avoid 
constant error, the possibility of which requires to be ever 
kept in mind. The observations made at  one visit and con- 
stituting 's comparison ' are these :--(I) The thermometera in 
the bars are read ; (2) the bar A being nnder the microscopes 
the lines or dots at  either end are bisected and the micrometer 
read ; (3) the second bar B is brought nnder the microscopes 
and read ; (4) B is thrown out of focus, brought back again, 
and read again ; (5) A is observed a second time after renewed 
focussing ; (6) the thermometers are read again. 

As no artificial temperature is used, it is the practice to 
compare bars when the temperature is near 62; which is the 
standard. temperature for standards of length in this country, 
and again when i t  ie much lower, so ss to eliminate the dif- 
ferences of expnnsion. The absolute rates of expansion have 
been determined for but few standards, although an elaborate 
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apparatus exists in the comparison room just described for the 

1 determination of absolute expansion of ten feet bars. The ~ great point in this apparatus is the possibility of maintaining 
a bar at a high temperatnre, such as 90" or 10O0, without per- 
ceptibly heating the room; then comparing, if for instance 
there be two bars A, B; A hot with B cold ; and again, B hot 
with A cold. Each bar lies closely between two long narrow 
tanks of copper ; the cold bar has either ice or cold water in its 
tanks, while those of the hot bar are oontinuously supplied 
with hot water by flexible feed pipes from a large cistern 
maintained steadily at the required temperature outside the 
building; the hot water continually running away from the 
tanks and passing out of the room by flexible waste pipes. A 
special mechanism permits of the rapid interchange of the bars, 
each with ita tanks, under the microscopee. 

The following coefficients of expansion were obtained for 
four ten feet bare from 6500 micrometer and thermometer 
readings :- 

Indian Standard : Bronze ... 0.0000098277 k ~0000000057, 

Y Y  ~3 she1  ... 0-0000063478 k -0000000056, 
Ordnance Survey: Iron ... 0.0000064729 k ~0000000031, 

n s, Iron ... 0.0000064773 ~0000000033. 
I n  expressing micrometer meaeurements and their probable 

errors i t  is convenient to use as unit the millionth of a yard. 
With this unit the probable error of a single micrometer 
bisection of a good line is, for an expert observer, k 0.26, but 
for a coarse or ill defined line, or a dot, i t  may be considerably 
more. The probable error of a single comparison of two bars 
depends on their length as well as on the quality of the lines : 
for a yard it varies from + 0.36 to k 0.66; for a bar of 10 
feet i t  may be between + -65 and k 1.30. 

The micrometer observations in the comparisons of standards 
are affected to a small extent by 'personal error': that is to 
say, what one observer may consider a 'bisection', another 
observer may thiik to be in error. What is technically 
termed a bisection is the placing of the spider lines of the 
micrometer centrally over the line to be observed; or the 
adjusting the parallel micrometer lines so that the engraved 
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line on the bar may appear equally distant from them. Thus, 
if one observer make a bisection, and two others were to make 
a drawing of what they see, they might produce wch results 

ss a and 6, fig. 27, where the fine lines 
a b are the micrometer lines, and the thick 

line is the engraved line on . the bar. 
There is harrna aet &@her a constant 
difference between two observers ; it ia only 
on twme lines that there is any personal 
error, and then it is but a very small 
quantity. The difference of opinion seems 
to arise from some inequalities about the 
edges of the engraved line. Those linea 

Fig. which bring out the greatest amount of 
personal error are fine or faint linea; the 

best lines for observing are those whose edges are clean and 
parallel. I n  the platinum metre of the Royal Society the 
lines are very fine and difficult to observe. 

When the observations to be made with a micrometer micro- 
scope are such that a large number of divisions have to be 
measured, involving i t  may be perhaps several revolutions of 
the micrometer, i t  is absolutely necessary to investigate the 
errors of the screw. As the measurement of any space on a 
scale is a f f i  by the error of focal adjustment, i t  is necessary 
in measuring spaces for the determination of the valuea of the 
screws of micrometers that the focus be readjusted a t  every 
measure. I n  the principal micrometer microscopes of the 
comparison apparatus at  Southampton the value of a division 
of the micrometer is for the one microscope 0.79566 k -00008, 
and for the other 0.79867k.00009; these values are not sen- 
sibly a f f d  by temperature. The probable errors in the 
measurement of n thousand divisions are for the respective 
microscopes 

+ J-187na+.20 and + J -349n~+-20,  

the larger quantity arising from that microecope having less 
perfect definition. 

I n  the case of standards, 'B bouts,' the wrfaas  of the circular 
terminating disks should be slightly convex; but the radius 



of curvature of these surfaces is a disposable conetant, which may 
be turned to account in the following manner. The true length, 

] or, which is the same, the maximum length of the bar, L the 

I 
distance of the centres C, C' of the two disks, these, aa well 
as the  corresponding centres of curvature being in the 
arb of the bar. If the measure be made from any point P 
on the  surface of one disk to a point P' on the other disk, 
the distance PI", if taken as the length of the bar, will 
be in error. Now we may take the radius of curvature 
p of either disk such that the chance error consequent on 
measuring between any other than the centre pointa of the 
disks may be a minimum. Let 2a be the length of the bar, 
2e the diameter of the small disks. Take the centre point of 
the axis of the bar as the origin of coordinates, the axis itself 
being that of z, if r, 7' be the distances of P, P from the axis, 
we msy put for the coordinates of thoee pointa 

t- 
L U = ~ C O S ~ ,  = r h o ,  z = a - -  

2 ~ '  

One of these angles, as O', we may put = 0. Then 

which is the error of the measurement. The sum of the 
squares of these errors for all pairs of pointa is 

which is a minimum when p = 2a ; that is, the centre of curv- 
ature for either disk must be at  the other end of the bar. 

I n  order that the triangulation of the continental countries 
of Europe might be put in connection with the triangulation 
of England, the Government of thia county, a t  the suggestion 
of General Sir Henry Jarnee, then Director of the Ordnance 
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Survey, invited the Governments of Rnmia, P&a, Belgium, 
Spain, Austria, and also the United States of America to e n d  
their standards to Southampton to be compared. The in- 
vitation in each case was complied with, and an account of the 
comparisons, which are of the highest importance to Geodesy, 
will be found in two papers in the Philosophical Tranrsae th  
for 1866 and 1873 : fuller details are given in the work 
entitled Co~nparidom of t i e  Staudards of  Jerogtir of  Eeglarrd, 
Frame, h., by Col. Clarke, R.E. 

The following are some of the principal results of these 
comparisons, the Old English capitals representing the true 
lengths of the Yard, Toise, Metre, and Klafter :- 

The first three lines in this table afford, from many thou- 
sands of observations, three entirely independent values of the 
toise. The greatest divergence of any one of the three values 
from their mean is but half a millionth of s toise. Then the 
toise being known, the length of the metre follows by means 
of the definition 443296 & = 864000 B. A further check on 
this value of the metre is afforded by the Spanish bar, of which 
the length, as taken from Borda's rod No. 1, is 4.0004071 JH. 

N- OF 

Belgian Toke ......... 
......... Prucrcrisn Toke 

Russian Double Toise ... 

Spanish 4 Metre Bar. ... 
Platinum Metre, Roy1. Socy. 

Pulkowa copy of Klafter ... 
MilancopyPKl, . . . . . .  . .. K1.11 . . . . . .  

The 'line' represenb the 864th part of the Toim, or of the KlaRer. 
The Milan copy of the glaRar of Vienna haa two meanurea of the glattar 

laid off on it, one on its upper mrface defined by dots I .  3, the other on ib 
under nvtsce by dote marked by R o m  numeaale I. 11. 

STAND. 
TEMP. 

0 

61.25 .. 
,, 

3a.o 

61.15 
,, . 

AWEEDITED 
LENOTB~. 

L 
& - oooxoo 
& - 0 9 9  

a & - 0.00560 
mm. 

4 + 0-40710 
a- 0.01759 

1. 
Zt - o.oooa9 
Zt - 090580 
j/tt - 090wo 

Ll:z8r 
Y a m .  

a.13150851 @ 
a.13150gr 1 ,. 
4.a63oo798 ,, 

4.37493561 1, 

1.09360478 ,, 

a.07403658 ,, 
a.0740146a ,, 
a.oi40a990 ,, 



Amrding to  the observations at  Southampton the Spanish 
bar is 4.0004052 a, a differenoe of only half a millionth of the 
length. 

The h l  resuits are these : 

& = 2.13151116@, 

fit[ = 1.0936231 1 @, 

St = 2.07403483%. 

The lengths adopted for measured bases have varied accord- 
ing to the  circumatancee of each case. That of Beasel in East 
PRlssia, as we have seen, was but little more than a mile in 
length-whereaa the base line of Ensieheirn in France measured 
by Col. Henry was 11.8 miles. Between these limits they 
may be found of all lengths. In India, with the exception of 
the line a t  Cape Camorin of 1.7 miles, the remaining nine 
bases are between 6.4 and 7.8 miles. In the Spanish triangu- 
lation are several short bases of about a mile and a half; the 
principal base, near Madrid, is 9.1 miles long, and there is one 
of just a mile in length in the Island of Ivies. 

I n  selecting ground for a btrse measurement, the conditions 
to be secured are that it be fairly even, and free from obetaclee, 
and that the extremities should not only be mutually visible, 
but command views of more distant stations of the trirmgu- 
lation, so that the sides of the triangles, commencing with 

Fig. 28. 

the base, may gradually incresse. The first of the annexed 
diagrame shows the connection of the baae measured at 
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Epping, Maine, United States, with the adjoining trigom- 
metrical stations. The second shows the connection of the base 
measured near Ostend by General Nerenburger in 1 8 5 3. 

The knowledge of the length of a metal bar a t  any moment 
involves three distinct matters : the length at  some epecified 
temperature, the coe5cient of expansion, and the temperature 
of the bar at  the moment in question. The first is known by 
repeated comparisons with the Standard ; the eecond can be 
obtained only from special experiments; the exact tem- 
perature of a bar at  any moment can only be inferred from 
the indications of thermometers in contact with it, involving 
the assumption that the temperature of the bar is the same as  
that of the mercury in the thermometers. But experiments 
have shown that we may be deceived in this. 

To evade the temperature difficulty two different forms of 
construction have been adopted, one--that of Borda-where 
the meamring bar is composed of two rods of quite different 
rates of expansion, forming a metallic thermometer ; the other 
that of Colby, where by a simple mechanical arrangement two 
rods of different expansions are m d e  to present two pointa a t  
an invariable distance. 

Whatever be the apparatus d, it is essential that the 
measure be confined efridly to the vertical plane containing 
the extremities of the base; and that the deviations, in the 
vertical plane, of the line actually measured or traced by the 
individual bars from a straight line, be precisely measured. 
The first part of this sentence requires however to be qualified 
-it is sometimes necessary that two or more segments of a 
base be not absolutely in the same straight line; this is no 
disadvantage when the angles the different parts make with 
one another are known. But in each segment the measure 
must be in one vertical plane. 

As a preliminary operation to the messurement of a baee i t  
is usual after getting an accurate section of the line by spirit 
levelling, to measure the distance in an approximate manner. 
In  making this measure one or two or more points are selected 
in positions convenient for dividing the baee into segments. 
The selected points are mbsequently adjusted into the line of 
the base with the utmost precision by means of a theodolite 
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or transit instrnment ereded a t  either or both extremities; 

l 
or if they be not abeolately in the line, angles measured a t  
them indicate their real position. Them intermediate pointa 
are eometimes preserved in the same permanent manner as 
the terminal pointe of the base, namely, by a h e  mark on a 
mawive block of stone set in brickwork. The mark itself may 
be a microscopic cross drawn on the surface of a piece of brais 
cemented into the stone, or it may be a dot on the eud of 
a piece of platinum wire set vertically in lead run into a hole 
in the stone. I n  some casee the ends of a base have been 
indicated by small vertical facet& 

A more detailed aligning of the baae follows. By means of 
the theodolite or transit instrument over the ends and inter- 
mediate points, pickets are driven into the gromd st regular 
intervals; each picket carries a fine mark indicating exactly 
the line of measurement. As the errors resulting from faulty 
alignment do not tend to cancel, being always of the same sign, 
this operation always receives the last degree of care. 

In attempting to give a description of the apparatus and 
pmmmes for measuring base lines i t  would be quite beyond the 
purpose of this work to enter into the details which are very 
complex. Abundant information can be obtained from such 
works ae the following :-Cotnpte rendu des opkrationa . . . a la 
mmre a h  baser gkd8ipuea Belgee, Bruxellea, 1855 ; fiiangu- 
lotion du Royaume a% Belgique, Bruxellee, 1867 ; Exp&iencee 

faitcd avec Pappareid a memrer lee b w ,  Paris, 1860; Bade 
Centrule de la triangulation gkodksipue d'eqagne, Madrid, 1865 ; 
the Account of tAe nteastrrment of the Zm~giI Poyk bade, 
London, I847 ; and other works. 

I n  the apparatne used by the Russian Astronomer F. W. 
Struve in the mmmrement of base-lines, there were four bars, 
each two toiees in length, of wrought iron. One end of each 
bar terminates in a small steel cylinder coaxal with the bar, 
its terminal surface being slightly convex and highly polished, 
the other end carries a contact lever of steel connected directly 
with the bar. The lower arm of this lever terminates in a 
polished hemisphere, the upper arm traverses a graduated arc 
also rigidly connected with the bar. When an index line a t  
the end of the longer arm points to a certain central division on 
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the graduated arc, the bar is at  its normal length, b u t  ita 
length is also known comeaponding to any 
reading of the arc. The annexed figure 
shows the contact lever. I n  memuring, the 
bars are brought into contact, which is main- 
tained by a spring acting on the lever. Each 
bar held at  two points is protected within 
a box from which its extremities project; 
it is further protected from variations of tem- 

~ i .  ag. perature by being wrapped in many folds of 
cloth and raw cotton. Two thermometers, 

whose bulbs are let into the body of the bar, indicate its 
tempelature. 

The end of a day's work is marked by driving into the 
ground under the advanced end of the front bar a very large 
iron picket to the depth of two feet. This picket carries an 
arm with a groove, in which slides, and can be fixed, a metallic 
cube having a fine mark on its upper eurface. The projection 
of the end of the bar over this mark is effected by means of a 
theodolite established aa a transit instrument at a distance of 
25 feet in a direction perpendicular to the bsse. 

Stmve investigates very carefully for his several bases the 
probable errors arising from the following cansea. 1. Errors 
of alignment. 2. Errors in the determination of the in- 
clinations of bars. 3. Error in the adopted length of the 
working standard. 4. Error in the adopted lengtb  of the 
memuring bars. 5. Error in reading the lever index and of 
the graduation 6. Personal errors of the observere. 7. The 
uncertainty of temperature. This last was subdivided into 
four headings, (1) uncertainty in the expansion of the standard, 
(2) uncertainty in the expansion of the measuring bars, 
(3) uncertainty of temperature during the comparisons of the 
bars and standard, (4) uncertainty of the mean temperature a t  
which the baee was measured. 

The probable errors of the seven bases meamed with these 
bars range from k 0 . 7 3 ~  to +0.91p, where p is a millionth 
part of the length measured. 

The remainder of the Russian lasee, three in number, were 
measured by the apparatus of nil. de Tenner. I n  this eystem 
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the measuring bar is of iron, and the intervals between bars in 
the line is measured by a fine sliding scale. The nccrlracy of 
these bases is not so great, the probable errors are about 
- f 3 . 1 ~ .  

Borda's measuring rods have been already described in 
connection with the work of Delambre. I n  Bessel's system 
the ~ l a t i n u m  and copper of Borda are replaced by iron and 
zinc, and the intervals are measured with a glass wedge. 
The annexed figure shows the small interval forming the 
metallic thermo- 
meter. The upper 
or zinc rod terrni- 7rm1 
nates a t  either end 

i in a horizontal ! 

knife edge. The 1 
small piece affixed 
to the upper sur- 
face of the iron 
rod has two ver- 

DF[ 
tical knife edges, Fig. 30. 

one forming the 
end of the measuring rod, while the other, or inner knife 
edge, forms with horizontal edge of the zinc the small interval 
which constitutes the thermometer. 

The rods are supported on seven pairs of rollers carried by 
a bar of iron, the whole being protected in a case from which 
the contact ends of the rod project. A small longitudinal 
movement of the rods by rolling on the supporting rollers is 
communicated to  them by means of a slow motion screw of 
which the milled head projects from the box. 

The glass wedge has a length of about four inches, being 
0.07 of an inch thick a t  the smaller end and 0.17 a t  the 
larger end ; i t  has engraved on its face 120 division lines 
0.03 of an inch apart. 

Denote by T the standard temperature to which the mensure- 
ments and comparisons are reduced. Let the lengths of the 
zinc and iron rods a t  this temperature be 1, 6, then a t  any 
other temperatare they will be thus expressed, 

L = Z + e ( t - T ) ,  L'=Z'+e'( t-r) .  
M 
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Let the difference between them, as measured by the wedge, 
be i at the temperature t, then i = 2'-l+ (d - e)  (t - r), and 
eliminating t -1, 

Id-l'e di . L'=-- +7, 
el-e e - e  

that is, the length of the rod is expressed in the form A + B i ,  
where A and B are constants to be determined for each 
compound rod. The lengths of the rods may be written thus 

The small dieerences of the bars represented by the quanti- 
ties 2, the sum of which. is zero, and the values of the thermo- 
metric coefficients y, are determined by comparisons of the 
rods. i?~fer se. From them comparisons a system of eight 
equations is deduced by the method of least squares from 
whioh the x's and y's are obtained. Finally, the comparison 
of one of the rods with the standard gives I. 

The length of the base line i s  finally expressed in the form 

The probable error of Bessel's base waa found to be 2 2 .2~ .  
Bessel's apparatus was used in the Belgiam bases near 

Beverloo and Ostend, measured (1 852, 5s) with every imagin- 
able precaution by General Nerenburger. The mode of 
terminding a day's work by the use of the plummet, a weak 
point in Bessel's base, was replaced by the following procedure. 
The exact end of a day's work beiug dkided in advance, a 
mass of brickwork was built from a depth of a couple of feet 
up to the surface of the ground ; in this was built a cast-iron 
frame presenting a surface flush with the brickwork. Another 
frame of iron two feet high, and which could be screwed to 
the former or removed at  pleasure, carried on its upper surface 
a groove in which a small measuring rule 14  inches long was 
free to slide ia the line of the base and to be clamped where 
required. This rule terminated in a vertical knife edge a t  one 
-the advnaeed-edge, and in a horizontal knife edge at the 
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following end. When the vertical knife edge of the last bar, a t  
the end of the day's work, arrived near this apparatus, the 
small rule was set and clamped so as to leave between i t  and 
the measuring bar the usual small interval for measurement 
with the glass wedge. On the following morning the work was 
remmed by atarting from- the other end of the rule-which 
thus formed a part of the base m e m e .  

The mean errop of the base near Beverloo, 2300 metres in 
length, was + 0.59 p ; that of the Ostend base, 248% metres, 
was + 0-45 p ; Bheee a t  least are the quantities ae computed. 

In  Colby's Compensation Apparatus the component bars 
are of iron and brass, 10 feet in length, firmly conneoted at 
their centres by s couple of transverse cylinders. A t  either 
extremity is a metal tongue about six inches long, pivoted to 
both bars in such a manner as to be perfectly firm and im- 
moveable, while yet not impeding the ixpansibn of the bars. 
A silver pin let into the end of each tongue carries a micro- 
scopic dot, marked c, d in the figure. The letters ab,  a'b' refer to 

Fig. j r :  

the axes of the pivots shown by dots. To -plain how the dis- 
tance cc' is independent of temperature, let a, P be the rates of 
expansion of the brass and iron bars aa', bd', respectively. Bp- 
construction, . 

ac :6c=a:p=a 'c ' :b 'c ' .  

Now the centres of the bars being fixed, let a certain increase 
of temperature imparted to each bar cause a to move off to the 
left the small distance ai, while b is carried in the samc 
direction the amount pi. It is clear that the movement of c 
is zero ; that is, the distance of the dots c c', exactly ten feet, 
is invariable. 

In  order to ensure the proper action of this mechanism i t  is 
necessary that the radiation and absorption of heat by the 
bars be equal ; this is effectcd by clouding and varnishing the 

1 2  
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surfaces until by experiment the rates of heating and cooling 
are found to be the same. 

The bars, resting immediately upon a pair of rollers, are pro- 
tected in a stout wooden box, and prevented from longitudinal 
motion by a pin passing up between the cylinders. The boxes 
are supported on tripods and trestles in the usual manner. 

The interval between two bars in measuring is six inches, 
measured by a ' compensation microscope ' constructed thus : 
two microscopes of two inches external focal length, lying 
parallel and six inches apart, are connected by two bars, one 
of brass and the other of iron, in such a manner that the outer 
foci are compensated points at  six inches distance. Through 

the centres of the two bars passes a && third microscope parallel to the 
others; this is a telescopic micro- 
scope, that is, i t  has a focal adjust- 
ment to suit vision of p i n k  at  
slightly different distances. More- 
over i t  is provided mith object 
glasses of various lengths, the col- 

Fig. j 2 .  limation of which is an important 
matter. 

The three combined microscopes revolve round the axis of 
the centre one in a tube to which is affixed below, a tripod 
with levelling screws. Motion is communicated to the com- 
pound microscope 'in two horizontal directions, i.e. in the line 
of the base and perpendicular thereto, by two slow motion 
screws, wen in the drawing Fig. 32. The tripod is supported, 
when the microsr pes are being used, on a three-armed grooved 
stand affixed to the end of the bar box. On one side of the 
compensation mirroscope is affixed a level, on the other a small 
telescope moveablc in a vertical plane for alignment. 

The end of each series of six bars in the measurement is 
transferred to the ground by means of a 'point carrier,' which 
is a massive triangular plate of &iron having attached to 
its surface, or at  a height above it that may be varied as re- 
quired, an adjustable horizontal disk with a fine point engraved I 
on it. This point is adjusted to bisection in the focus of the 
advanced telescopic microscope. , 1 

I 
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With this apparatus two haw have h e n  measured in this 
county;  one in Ireland, in  the county of Londonderry; the 
other on Salisbury Plain. 

I n  India ten bases have been measured on this system. 
It must be admitted that these bars-and especially in 

India-have not given unqualified satisfaction. I n  consequence 
of the inaccuracies of the apparatus, deteded in the work in 
India, the  ordinary practice was departed from in the Law a t  
Cape Comorin, and instead of the usual length, a line of a 
fourth of the length was eelected and measured four times. 
By this means a value of the probable error of measurement 
was obtained which could have resulted from no other process. 

The line runs north and muth, and was divided by three 
intermediate points into nearly equal segments. I n  conse- 
quence of facts that had come to light regarding the thermal 
inequalities of the components of the compensation bars, two 
of the measurements were made with the brass bar to the 
west, the other two with the brass to the east. Each measure- 
ment was further made dependent solely upon comparisons 
with the standard made on days immediately preceding and 
following that measurement. The results, in feet, are shown 
in the following table :- 

No. OF 
MUSURE. 

Fimt 

Thirrl 
Fourth 

i Meam 

&GMENT SEGFT , SEGMENT I TOTAL 
I. IV. 1 LENGTH. 

It is important to remark that the 'compensation ' principle 
was not in  this case relied on. The components of one of the 
bars were each supplied with two thermometers which were 
regularly read during the measurement. 

Prom these rememurements the inference is that the 
probable error of measurement of a base-line is about + 1.5 p. 
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The United States Coast Survey Base Apparatus devised 
by Professor Bache in 1845 combines the principle of Borda's 
measuring rods, the compensation-tongue of Colby's, and the 
contact lever of Struve's. The cross sections of the component 
bars are so arranged, that while they have equal absorbing 
surface, their masses are inversely as their specific heats, 
allowance being made for their difference of conducting 
power. The components are placed edgeways, the iron above 
and the brass below, firmly united together a t  one end. The 
brass bar, which has the largest crow section, is carried on 
rollers mounted in suspending stirrups ; and the iron bar rests 
on small rollers which are fastened to it and run on the brsee 
bar. Supporting screws through the sides of the stirrups 
retain the bars in place. The .connection between the free 

Fig. 33. 

ends of the component bars is the lever of compensation which 
is pivoted to the lower bar. A knife edge on the inner side of 
this lever abuts against a steel plane on the end of the upper 
or iron bar. At its upper end this lever terminates in a knife 
edge facing outwards in a position corresponding to the com- 
pensation point in Colby's bars. The knife edge presses 
against a collar on a sliding rod moving in a frame affixed to 
the iron bar above ; the sliding rod is drawn backwards by a 
spiral spring through which i t  passes and keeps the lower 
knife edge of the lever pressed with constant pressure against 
the iron bar. The sliding rod terminates in an agate plane 
for contact. A vernier attached to this end of the bar gives 
their difference of length as a check on the work. 

At the other end, where the bars are united, there is a 
corresponding sliding rod terminated outwardly in a blunt 

I 



horizontal knife edge ; the inner end abuts against a contact 
lever pivoted below, this lever when pressed by the sliding 
rod comes in contact with the short tail of a level, mounted on 
trunnions and not balanced; for a certain position of the 
eliding rod the bubble comes to the centre, t h i ~  position gives 
the true length of the measuring bar. I t  is obvious that this 
is an exceedingly delicate mode of measuring ; the pressure of 
the contacts is moreover always the same. 

At this end of the apparatus there is also a sector for 
indicating the inclination of the bar in meamriug, and i t  is 
indeed to the arm of this sector that the contact lever and 
level are attached. For perfect understanding of these com- 
pensation bars, reference must be made to a description and 
figures contained in the U. 8. C o d  Sunley Ayuui, 1873. 

Tbe har mc in a spar-shaped double tin tubular 
case; the air chamber between the two w e s  being a gre.~t, 
check on the variations of temperature. The tube is strength- 
ened by diaphragms and a vertical and a horizontal sheet of 
iron running the whole length. The ends are closed, the 
sliding rod only projecting at  either extremity. The tubes 
are painted white externally; they are mounted on a pair ot' 
trestles; and there is a special apparatus for making the 
contacts with very great delicacy. There are two such bars 
in the apparatus, the length of each is six metres. 

~ i ~ h t  b r  more bases have been measured with these .bars 
which offer considerable facility for rapid work; as much as a 
mile in one day having been completed with them. 

As in Colby's apparatus however, the compensation cannot 
be absolutely relied on;  the length of the bar depends on 
whether the temperature is rising or falling, and a length 
is assigned from actual comparisons in each af these 
conditions. 

One of the last bases, that of Awlanb in Georgia, wes, 
measured three times (U. 8. C. Surrey Beport, 18,731, twice in 
winter and once in summer, the range of temperatures at  
which bars were laid extending from 18" Falrr. to 107" Fahr. 
By this means an extreme test of the performance of the bars 
was afforded. The line was subdivided into six segment-s of 
about a mile each. The discrepancies in the three measilres 
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when compared with their respective means appear in the fol- 
lowing table, expressed in millimetres :- 

I. 
11. 
1II. 
I v. 
V. 
VI. 
Sum 

Frsm 
M E A ~ U R E .  

- -  - 

mm. 

These discrepancies are notably smaller than the carefully 
calculated probable errors of the three entire measures which 
are + 26mm, + 26mm, and If: 21"" respectively; this is certainly 
an unusual phenomenon. By far the greater part of these 
probable errors is due to the comparisons of the bare with the 
daudard. But the three measures were not absolutely in- 
dependent. The final length of the base is 9338-4763k-0166, 
the probable error may be otherwise expressed as + 1.76 p. 
The probable errors of the seven previously measured bases 
varied from 2 1.8 p to 2.4 p. 

A system of measurement wholly different to any of those 
just described is that of M. Porro, adopted by the D41o"t de la 
gzierre for the measuring of bases in Algiers. I n  this system 
there is but one measuring bar which is made to measure the 
successive equal intervals between microscopes arranged- their 
axes vertical-in the line of the base. The number of micro- 
scopes is four, and the length of the bar is three metres, which 
is therefore the interval between two adjacent microscopes. 
Supposing the microscopes marked A, B, C, D in the direction 
of measuring, the bar is first placed under A and R, then 
after the microscopes are read it is transferred to B and C, 
nnJ -1 is placed with its supporting trestle three metres in 
advance of D ; and so on in succession. 

Each microscope is supported on a very strong and massive 
trestle. The rnicroscope and its immediate support may be 

11lrn. 

+ 1.76 
- 2.88 
-0 .23  
+ 3.38 
+ 1.50 
- 3.85 
- 0 3 2  

mm. 1 
+ 3.32 1 
+ 1.97 1 
- 4 . 1 4 ;  
- 1.08 
+ 1.18 1 
+ 7.16 ' 
+ 8 4 1 '  

I 
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thus described :--a vertical cylindrical column springing from 

l 
a tripod base with levelling screws, has two horizontal and 
pnrllel arms projecting perpendicularly to the base l ine; 
these hold the microscopes above and below in  collare. I n  
these collars the microscope rotates, and by means of an 
attached level can be made-vertical; i t  can also be elevated 
or depressed small quantities for focal adjustment. The 
o b j e c t - g h  is of a peculiar construction ; in order that one 
may read not only the Lars a t  a few inches distance, but also 
when required a point of reference on the ground, there is a 
large object-glass of about a metre external focal lengtll, and 
in t h e  centre of this is fixed an object-glass of short focal 
length. A stop in front of the object-glass has in it,s centre 
an aperture corresponding to the diameter of the short focus 
object-glass. This stop can be removed a t  pleas~lre ; whelr 
removed, points on the ground are visible, and when on, the 
divisions on the measuring bar can be read. 

On the side of the vertical column, opposite to the micro- 
scope, is attached a bracket, which k i n g  somewhat massive 
serves as a counterpoise to the microscope, a t  the =me time 
i t  is made to sup&rt the pivots of the horizontal transverse 
axis of a   mall aligning telescope. This bracket has a move- 
ment in azimuth round the column, and the centre of the 
telescope when directed in the line of the base is 0.144 of a 
metre distant from the axis of the microscope. The telescope 
can be removed and replaced by a graduated scale a decimetre 
in length. The telescope serves to read the graduated deci- 
metre d e  on the next following microscope in connection 
with a mark in the line of the base-or rather Om-144 behind 
it-at a distance of some 300 metres. The reading of the 
scale corresponding to this mark determines the horizontal 
deviation from the line of the base. Thus account is kept of 
the direction of each position of the bar, the inclination being 
determined by a level. 

In order that the aligning telescope may be able to show 
a point three metres off, as well as another a t  300" or there- 
abouts, there is set within the tube of the telescope, behind 1 the object-glass and concentric with it, a small lens, the 
actual poaition of which in the tube can be varied longi- 



170 MEASUREMENT OF BASE-LINES. 

tudinally bj- means of a rack and pinion. This lens in 
combination with the object,-glass can be adjusted so as to 
make the scale three metres off distinct,ly vlible, while the 
remainder of the object-glass forms an image of the distant 
point of alignment. 

The measuring bar is composed of two cylindrical rods laid 
side by side, of steel and copper, firmly united a t  their common 
centre and free to expand outwards. They are protected in a 
stout deal box strengthened by diaphragms; and there is 
an arrangement for measuring any flexure of the rods. Their 
ends project from the box, and each rod has a small scale of 
graduations a t  its extremity. 

When the bar is adjusted under a pair of microscopes the 
scales on both rods are read, the readings Leing made simul- 
t.aneously by twa dammmq one pt en& end ; if there be any 
doubt as to the collimation of the microscopes they are rotated 
in azimuth 180' and read again. 

The reference to the ground either a t  the extremities of the 
line, or a t  the end of a day's work, is effected as follows. A small 
scale divided to millimetres has a pin affixed perpendicularly 
to its under surface; this pin fits exactly into a hole in a 
copper disk firmly connected with the ground, or into a corre- 
sponding pinhole indicating the end of the base. The lrole 
being approximately in the axis of the microscope-adjusted 
to perfect verticality-the pin of the scale is inserted into 
the hole and the length of the scale directed in the line of 
measurement. 

I n  order to determine the distance of the optical axis of the 
microscope from the centre of the hole, the scale is read by the 
microscope, it is then reversed end for end and read again. 
Then in order to eliminate any collimation error in the object- 
glass, the microscope is turned through 180° of a2imut.h and 
the readings taken again. 

The modification thus described of the original apparatus of 
31. Porro is due to Colonel Hossard. The description will be 
found in vol. ix of the Me)norial du d46t geilei.al de la gnerre, 
Paris, 1871. The three bases measured with i t  in  Algiers - 
have probable errors estimated a t  + 1.0 p in each case. 

The apparatus of Porro, still further modified and improved 
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by General Ibaiiez, mas used by him for the measurement of 
the base lines in Spain. The measuring bar is four metres, or 
rather two toises in length. See the work entitled, Base 
centrule de la triangulation gebrIk&que cFespayne par  B. C Ibanez 
Cohlel du ghk, kc., Madrid, 1863 (p. 564), which c o n t a i ~ ~ s  
an elaborate account of the base of Madridejos. Also Ex- 
pe'rienees faites avec I'appareil h mesurer les bases, Paris, 1860 
(p. 380), containing the description of the apparatus. 

The base a t  Madridejos was divided into five segments; 
the central segment, 1.7 miles in length, was measured twice. 
It was subdivided into 12 sections of 234 metres (one 
of the sections mas a little short of this), each section was a 
day's work on each occasion of measurement. The differences 
of the two measurements of each section, expressed in milli- 
metres, are these : 

the sum of t l ~ e  squares of which is -8765. Iience the mean 
error of the mean of the two measurements of this segment 
of the base is a m 5  = + 0.47, and its probable error k .32  
millirnetres, showing a wonderful precision of measurement. 

The two components were of copper and platinum, and 
the length was determined by 120 comparisons with Borda's 
rod No. 1. 

The determination of the thermometric coefficient of the 
compound rod may be thus explained. Let there be t a o  
fixed microscopes, a t  the distance of two toises apart, adjusted 
to verticality and the readings of their collimation centres 
known. Let  P be the length of the platinum bar a t  the 
t,ime of observation, B that of the brass, t their common 
temperature a t  that moment: suppose that these bars are 
absolutely equal a t  the temperature 7, having then the com- 
mon length R. Then a t  the time of observlrtion t.heir lengths 
are 

P = R+.(t-r)e, B = R+(t-r)e ' ;  

where e and d are the respective expansions for one degree of 
temperature. 
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The micrometer heads being supposed both turned to the 
right, let a, b be the readings of the left and right micro- 
scopes for the bar P, a', b' being the corresponding readinp 
of B ; then if a, /3 be the readings of the collimation centres, 
and A ,  k the values of one division of the micrometer in t.he 
two microscopes, the distance Z of the collimation centrea is 

Z=R+(f - r )e -1(a  -a)+k(b-P), 
Z=R+ (1-7) e'-1 (a'-a) -+ k(b'-/3). 

Eliminate t-r, and me get 

Let the small quantity Z-R = z, and put e = y (e'-e) ; then 
the observations of the two bare give an equation of the form 

Suppose now that by artificial means the bar is made to 
undergo changes of temperature while the microscopes remain 
fixed ; then by observing the bar a t  different temperatures we 
have a series of equations of the same form as the above, in 
which thc measured quautities a and c vary from one equation 
to another. But the microscopes cannot be supposed to 
remain absolutely fixed, except for comparatively short periods 
of time ; suppose then that in  the first i observations 2 has a 
value zl, in the next group of i equations the value z2, and 
so on ; corresponding subscripts being also affixed to the 
observed quantities, the elimination of the z's leads to the 
equation 

The sum of the squares of the coefficients of the measured 
quantities c in this expression for y is the reciprocal of 

1 
(a2) - ; {(a,)' + (a,)" (a,)' + ... 1, 

thus y and its probable errom are known; and in the measure- 
ment of the base the distance of the centres of two microscopes 
is a t  once expressible in the form Z= R + a +P y. I n  the Spanish 
apparatus the probable error of the value of R as resulting from 
comparisons with Borda's rod No. 1 was k Om.00 1. 
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Tile annexed figure shows the base line of Madridejos with 
the verificatory triangulation, constituted by the five segments 
and four external points. The observed angles a t  the ten stat.ions 

Fig. 34. 

give the means of calculating the lengths of any four segments 
tiom a n  assumed length of the fifth. Taking the measured 
length of the central segment as the basis of the calculation, 
the contrast of the measured and computed lengths of t,lie 
outer segments stands thus : 

I. 
11. 

111. 
IV 
v. 

Sum 

MEASURED. 

In. 

3077.459 
2216..397 
zj66604 

2ia3.425 
3879.~0 
14662.885 



CHAPTER VIII. 

INSTRUMENTS AND OBSERVING. 

1. 
WITHOUT a large number of drawings i t  would be impossible 

to give an idea of the variety of forms adopted in the con- 
struction of theodolites for geodetic-including in that term 
astronomical-purposes. They may be divided into three 
classes : (1) Altazimuths, which are available for both terres- 
trial and astronomicsl work ; (2) those which are intended for 
terrestrial angles, and also for determinations of absolute 
azimuth, but not for latitudes ; (3) those intended only for 
terrestrial angles. The larger instruments are read by micro- 
meter microscopes, the smaller by vcrniers. In  some theodolites 
the microscopes of the horizontal circle move round with the 
telescope while the circle is fixed ; in others the circle moves 
with the telescope and the microscopes are fixed. 

The two large theodolites of Ramsden, which have been 
already described, belong to the second of the classes specified, 
the microscopes for reading the horizontal circle being fixed. 
For the great Trigonometrical Survey of India, Colonel 
Everest had two theodolites with horizontal circles of three 
feet, and vertical circles of 18 inches-belonging to the claw 
of altazimuths-the former circles being read by five micro- 
scopes, the latter by two. Besides these there were his two 
' astronomical circles,' altazimuths also in form, consisting 
of the following portions;-a double vertical circle of 36 
inches diameter, formed of two parallel circles united, with a 
telescope between them; the circles are divided into 6' intervals, 
and the telescope is 64 inches in focal length and 3.46 inches 
aperture. On one side the vertical circles are read by two 
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fixed microscopes, 011 the other side by two moveable micro- 
scopes. These instruments were used for the determination of 
lntitudes by measurement of the zenith distances of stars on 
the meridian, being used mmultaneonsly a t  pairs of stations. 

The instruments employed on the Principal Triangulation 
of Great Britain and Ireland were, besides the two large theo- 
dolites of Ramsden, a smaller one of 18 inches diameter,- 
represented in  the above figure-also by Ramsden; and an 
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altazimuth by Troughton and Simms. This instn~rnent has a 
repeating stand, and a horizontal circle of 2 feet diameter. The 
circle is connected by six conical radii to the axis of the instru- 
ment, which is conical and of steel. A cylindrical drum, 8 inches 
in diameter, having six vertical nlicroscopes attached to it, and 
an interior hollow axis, is placed on the steel axis just mentioned, 
and revolves round it. Prom a metal plate on the surface of 
the drum rise two columns supporting the Y's which take the 
pivots of the telescope axis ; they are sufficiently high to allow 
the telescope to rotate in a vertical through 180". The 
telescope has a focal length of 27 inches, and aperture of 2.1 2 ; 
i t  is fixed between two parallel vertical circles of 15 inches 
diameter concentric with the axis of rotation of the telescope. 
The horizontal and both vertical circles are divided into 5' 
spaces, thc latter are read by microscopes passing through the 
pillars. The instrument is supported by three levelling screws 
on the repeating stand; this has never been u d  for the 
purpose of repetition1 but serves for changing the position of 
the zero of the circle. The whole instrument, including the 
repeating stand, rests on three levelling foot screws. A 
vertical telescopic microscope passes down through the axis 
of the theodolite for centering i t  over the station mark. The 
instrument is represented in the next page, fig. 36. 

I n  the United States Coast Survey the larger theodolites 
have diameters of 24  and 30 inches. The theodolites used on 
the European continent are generally smaller. Struve, for his 
own personal use in  his great arc measurements, used a ' nni- 
versa1 instrument '-equivalent to an altazimuth-made by 
Reichenbach. The horizont,al circle had a diameter of 13 
inches, the vertical circle 11 inches ; they were read each by 
four verniers to 4", or by estimation to seconds. I n  the 
middle of the telescope a prism bent the rays of light a t  right 
angles so as to pass out a t  one of the pivots where was situated 
the eyepiece. The magnifying power used was 60 ; the focal 
length 18 inches, and the aperture 1.75 inch. There mas a 
lower telescope attached t.o the horizontal circle called a 
telescope of verification, destined to detect any shifting of the 

Exception made for a few experimental observstiom in 1818-29. 
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circle while the upper telescope wss being used. This instru- 
ment was nsed not only for terrestrial anglee, but for azimuth, 

Fig. 36. 

I 
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time and latitude. 'Notwithstanding its complicated con- 
struction,' says Struve, ' i t  is mathematically admit-able as a 
wl~ole, and in its details, and it requires a rational observer 
who shall have studied i t  scrupulously. In  the hands of sue11 
an one it fulfils i t s  functions to perfection.' And certainly 
his own work with it was of msrvellous precision. 

In  the present triangulation of Spain the theodolites (by 
Ertel and Repsold) used for terrestrial work have diameters of 
12.5 and 14.5 inches : for astronomical work, a theodolite by 
Repsold with a horizontal circle of 12.5 inches and a vertical 
of 10.25 inches, each read to two seconds by means of a pair of 
micrometer microscopes; and a transit telescope, a?lleojo d e p o 8 ,  
with a horizontal circle of 21.8 inches, the focal length of the 
telescope 31.5 inehes and an aperture of 2.68 inches. The 
telescope, as in the other instruments also, is bent at  right 
angles, and the length of the transverse axis between the 
supports is 19.5 inches ; there is also an apparatus by which 
the telescope is reversed in its Y's in a few seconds. The 
horizontal and vertical circles are merely for setting purposes. 

The footscrews of a theodolite rest generally in three con- 
verging grooves; or in some cases one foot rests in a small 
conical hole, the second in a groove directed to the first, and 
t h o  third on a plane; thus the first has no freedom to move, 
the second has one degree of freedom, the third is quite free. 

The arrangements of the spider lines forming the ' reticule ' 
in the common focus of object-glass and eye-piece are various : 

Fig. 37. 

in altazimuths, ss in astronomical instruments geneinlly, there 
are five or seven equidistant vertical threads crossed by one 
or three horizontal. For,  terrestrial observations there is 
either an acute cross intersected by a horizontal thread, or a 
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pair of close vertical threads intersected by a pair of horizontal, 
enclosing between them a small square of 40" or 50" side. 
The object observed is to be bronght iuto the centre of the 
square or bisected by the cross. Micrometer microscopes have 
either a cross for bisecting the graduation lines, or a pair of 
close parallel threads between which the graduation lines are 

I 

~ to be brought. 
The line joining the optical centre of the object-glass with 

the centre thread, or centre of the small square, or intersection 
of cross, is the line of collimation ; it is intended to be a t  right 
angles to the transverse axis of the telescope, when i t  is so i t  
traces out a plane as the telescope revolves, when there is 
collimation error i t  traces out a conical surface. The line of 
the Y's supporting the telescope axis should be a t  right angles 
to the vertical axis ; i t  is liable to a small error. The pivots 
of the telescope axis are generally uneqnsl, and their difference 
requires investigation. All large theodolites have two delicate 
levels, one connected with the vertiesl circle, the other for the 
transverse telescope axis ; the value of one division of these 
levels requires careful determination, and at different tempera- 
tures, as in some cases they vary with the temperature. Micro- 
meter microscopes read generally single seconds, but i t  is 
necessary to verify this from time to time and correct their 
readings if necessary. 

The errors of graduation of a circle are of two classes- 
periodical and accidental. The former are expressed by the 
formula 

where Ee is the graduation error corresponding to eircle 
reading 8. 

The error of eccentricity may be considered as a graduation 
error, represented by the first term of this series. If the circle 
be read by i equidistant microscopes, i t  is easy to prove that 
the error of the mean of the i readings contains only those 
terms which involve ie and multiples of id. For instance, 
with three microscopes, the error of the mean reading is 
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if we suppose the series to end with a,. I n  this case this 
portion of the error is the same under each of the microscopes; 
hence i t  cannot be eliminated by readings of the circle. But 
if two collimators be set up, so as to present a right angle for 
measurement by the circle, a, and 6, can be determined. 

The centres of trigonometrical stations are indicated gene- 
1-ally by a well defined mark on the upper surface of a block of 
done buried at a sufficient depth below the surface. In  the 
vicinity of a base line these marks are microscopic. The pre- 
cision of the results of a triangulation is dependent on the 
precision with which the observing theodolites are centred 
over the station marks. Whatever be the form of the signal 
erected over a trigonornetrical station, i t  is essential that it 
be symmetrbl with respect to the vertical line through the 
centre mark, so that the observation of the signal shall be 
equivalent to an observation of a plumb-line suspended over 
the mark. For very distant stations a heliostat is used, which 
centred over the station observed, reflects the rays of the sun 
to the observing theodolite. On tlie Ordnance Survey tlie 
heliostat is a circular looking-glass provided with a vertical 
and a horizontal axis of rotation, kept constantly directed by 
an attendant,. 

It is essential that the theodolite be suppo~.ted on a very 
solid foundation. The mode of effecting this must depend on 
the nature of the ground: generally i t  is sufficient to drive 
strong stakes as f i r  as possible into the eartli, then to cut them 
off level with the surface, and so form an immediate support 
for the stand of the instrument. I n  all cases the theodolite is 
sheltered by an observatory, the floor of which has no contact 
with the instmment stand. 

I n  order to command distant points i t  is sometimes neces- 
sary to raise the instrument by scaffolding 40, 60, or as much 
as 80 feet above the ground ; in such cases an inner scaffold 
carries the instrument, a secoud or outer scaffold supporting 
the observatory, as ehown on the next page1. 

The method of observing is this : let A, B, C . . . H, K be the 

' Fig. 38 is the drawing of a scaffold, seventy feet high, built by Sergeant 
Beaton, R.E. 
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points to be observed, taken in order of azimuth ; then, the 
instrument being in adjustment and level, A is bisected and 
the microscopes 
wad, then B is 
similarly observed, 
then in succession 
the other stations 
C.. .H,  K ;  after 
K the movement 
of the telescope in 
continued in the 
same direction 
round to A, which 
is oleerved a se- 
cond time. This 
constitutes what is 
termed on the 
Trigonometrical 
Survey of Great 
Britain 'an arc' 
(Rench,mise; Ger- 
man, satz). A 
more ordinary pro- 
cedure is to observe 
the points as be- 
fore in the order 
A , B , C  ... I I , K ,  
then reversing the 
direction of motion 
of the telescope, 
to reobserve them 
in the inverted or- Fig. 38. 

derK, H...C, B,A. 
Th~is each point in the arc is observed twice. 

In  order to eliminate errors of graduation i t  is the practice 
to repeat arcs in different po3itions of the horizontal circle; 
some observers shift the zero of the circle after each arc, others 
take a certain number of arcs in each position of the zero. 
Supposing the circle to remain really fixed during the taking 



1 82 INSTRUMENTS AND OBSERVING. 

of an arc (which is executed in as short a period of time as 
l'ossible), the probable error. of an observed angle will depend 
on the errors of bisection of the objects observed, on the errore 
of reading the circle, and on errors of graduation. I f  a be the 
prohable error of a bisection, the probable error of the mean 
of the readings of the microscopes, y the error of the angle 
due to faults in the division lines actually used, then the error 
of the angle as measured by n arcs in the same position of thc 
circle is 

But taking the angle from ?J measures in each of m positions 
of the  circle, the probable error is 

where y, having reference only to accidental errors of division, 
is a constant peculiar to each instrument. 

With a first-rate instrument in favouruble circr~mstances 
the probable error of a bisection, including that of reading 
the circle is, + 0".20. The probable error of an observed 
angle depends on the instrument, on the observer, and on the 
numbers n, m. I n  the best portions of the Indian triangu- 
lation i t  is + 0".28 ; in Struve's observations in the Baltic 
Provinces i t  was k 0".38. 

Ramsden's Zenith Sector, which had n telescope of 8 feet in 
length, wils destroyed in the fire a t  tlie Tower of Loudon, and 
11 as replaced by Airy's Zenith Sector. 

This instrument,, represtnted in the next page, fig. 39, is in 
three parts; the outer framework, the revolving frame, and 
the telescope frame. The framework is cast in four pieces; 
the lower part, an inverted rectangular tray with levelling 
footscrews; t\vo uprights with broad bearing pieces scre\\.ed 
to the inverted tray ; and a cross bar uniting the tops of 
these uprights. Through the centre of this bar passes down- 
\vards a screw with a conical point, which, together with the 
vertex of a cone rising from the centre of the inverted rect- 
angular tray, determine the axis of revolution and form the 
bearings of the revolving framc. 
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The revolving frame is of gun metal cast in one piece. It 
is also in  the form of a tray strongly ribbed a t  the back, 

having four lappets or ears acting as stops in the revolution. 
I n  the cent.re of the front of this frame is a raised ring of 
about nine inches diameter, forming the bearing plate of the 
telescope frame. Concentric with this ring a t  ench end of 
the frame are the divided limbs, which have a radius of 20.5 
inches, and are divided on silver to every five minutcs. There 
is also a t  each end a raised clamping-limb roughly divided, to 
which the clamp for securing the telescope a t  the required 
zenith distance is attached. On the reverse side of the re- 
volving frame are mounted three levels. 

The telescope frame revolves in a vertical plane by a hori- 
zontal axis passing through the revolving frame. Cast in one 
piece with the telescope frame are, the ring for holding the 
object-glass cell of the telescope, the four micrometer micro- 



scopes, which are afterwards bored through the metal, and the 
eye-piece. The micrometers are of the usual construction, 
the threads intersect in an acute angle, and have a range of 
about 10 minutes on the divided limb. 

In  the eye-piece of the telescope are five meridional threads, 
carried by a fixed plate, and a single thread a t  right angles to 
them, moved by a micrometer screw. The tube of the telescope 
is merely a protection from dust, and carries no essential part 
of the instrument except a simple apparatus for regulating 
the amount of light illuminating the threads, which by the 
turning of a screw, increases or diminishes the orifice through 
mllich the light enters. The focal length of the telescope is 
46 inches, the diameter of the object-glass 3.75 inches, and 
the magnifying power usually employed about 70. 

The deviation of the plane of the instrument from the 
meridian, which is generally very small, being carefully 
ascertained by observations of the transits of north and south 
stars, and the axis being as nearly as possible vertical, the 
observer sets the telescope to the approximate zenith distance 
of the star to be observed, clamps it, and before the star enters 
the field reads the four micrometer microscopes and the levels. 
The star on its appearance is bisected by the eye-piecc micro- 
meter on one of the threads, the name of the thread being re- 
corded with the reading of the micrometer. The telescope is 
then unclamped and the revolving frame reversed by turning 
i t  through 180" on its vertical axis, so that the face which 
before was east is uom west. The telescope is quickly re-set to 
the approximate zenith distance and clamped, and the star 
again bisected by the telescope micrometer on one of the 
threads, generally the same one on which i t  was previously 
observed. The five micrometers are then read and the 
levcls on the reverse side. This completes the double ob- 
servation. 

The amount of the azimuthal deviation is ascertained by 
comparing the differences of the observed times of transit of 
north and south stars with their differences of right ascension. 
If A be the excess of the difference of right ascension of two 
stars over the observed difference of times of their transits, 
6 6' their declinations, and 4 the latitude of the instrument, 
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then expressing A in seconds of time, a, the azimuthal deviation, 
is in seconds of space, 

15A cos8cosb' a = - 
cos $I sin (6 - 8') 

The correction to the zenith distance r, on account of this 
deviation, is 

sin2 a sin z cos c) - 
cots 8 sin 2" 

The correction for the distance i from the meridian, of the 
thread on which the star is observed is 

i2 + - tan 8 sin I", - 2 

the upper sign applying to south stars, the lower sign to 
north stars. The latitudes of 26 stations of the principal 
triangulation of Great Britain and lrelarld have been observed 
mith this instrument. 

The latitudes of n still larger number have been determined 
with the  Zenith Telescope. This instrument, which is of very 
simple construction and very portable, is represented on the 
next page. The telescope, 30 inches in length, is fixed a t  one 
end of a short horizontal axis, and is counterpoised a t  the 
other; thus the optical axis describes a vertical plane, that of 
the meridian when in use. The lower part consists of a tripod 
mith levelling screws connected with a steel axis about 15 
inches high, and an azimuthal setting circle. On the steel 
axis fits a hollow axis which carries a t  i ts  upper extremity 
the horizontal axis of the telescope. The latter has a setting 
circle and a very sensitive level. The reticule consis& of the 
o~dinary five transit threads and a transverse thread moved 
by a micrometer screw of long range, by which an angle of 
30' may be measured in zenith distance. I n  the plate forming 
the horizontal circle are four circular holes, by means of one 
of these, the telescope being pointed to the nadir, the col- 
limation is corrected by means of a Bohnenberger eye-piece 
and a basin of mcrzury. 

For observing, the first thing is to ascertain the reading of 
the meridian on the setting circle; this is done by a few 
transits observed. The observer is provided with a list of 
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etars in pairs; eacll p i r  is subjcd to the condition that 
the interval of their 
right ascensions is 
between 2" and 1 Om 
and the difference 
of their zenith dis- 
tances not greater 
than 15' ; one star 
passes north of the 
zenith, the other 
south. Now let the 
telescope be set to 
the mean of the 
zenith distances and 
directed to the south, 
say, supposing the 
first star to pass 
south of the zenith. 
The star as i t  passee 
is bisected by the 
micrometer thread 
on the centre thread. 
The instrument is 
then rotated through 
180' of azimuth, 
not disturbing the 
telescope ; the se- 
cond star will then 
a t  the proper time 
yass through the 
field, and is in like 
manner bisected on 
the centre thread. 
Knowing the value 
of a division of the 
micrometer we have 
a t  once, by the dif- 

Fig (0. 
ference of the mi- 

crometer readings, the difference of zenith distance of the 
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stars which leads immediately to the knowledge of the 
latitude. Each star observation is accompanied by readinp 

I of the  level. I n  this method, ref'tion is virtually 
eliminated, since i t  is only the difference of the refractions 
a t  the two nearly equal zenith distances which has to be 
applied. The value of the micromet,er-screw is determined 
by observing on the micrometer thread, transits of Polaris, 
while its movement is vertical or nearly so, thnt is, from 
2om before to 2Om after its time of greatest azimuth. Thus, 
in connection with observations of the level, an accurate 
knowledge of the screw over its whole range is obtained. 

This instrument is t,he invention of Captain Talcott, U. S. 
Engineers, and is exclusively used for latitudes in the U. S. 
Coast Survey. Its weak point is that in the selection of the 
pairs of stars, i t  may be necessary to use some stars whose 
places are but indifferently known. I n  this latitude, however, 
no great difficulty is found in obtaining pairs of stars whose 
places are given either in the Greenwich or Oxford Cnta- 
logues. As made by Wurdemann i t  is an instrument of 
extreme precision nnd most pleasant to observe with. We have 
had a case for inst.ance a t  Findlay Seat in Elginshire, where 
thirty-one pairs observed successively in one night presented 
a range not exceeding 2".00. 

The drnwing in Fig. 41 represents a very excellent portable 
transit instrument used on the Ordnance Survey in connection 
wit.h the Zenith Telescope. The uprights are of mahogany, 
built of pieces screwed together ; i t  has a reversing apparatus 
l ~ y  which the telescope can be reversed in 15'. The focal 
length is 21 inches and it,s arerture 1.67 inches. 

A telescope mounted on a trnnsverse axis, as that of an 
nltazimuth or transit instrument, as i t  rotates round that 
axis, experiences alterations of force which, since the material 
(if which both telescope and axis are composed is not rigid 
but rather flexible, tend to change its form. Suppose, iu the 
first place, that the illstrument is perfectly rigid, perfectly 
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collimated, and perfectly level, its centre thread tracing ant, 
my, the meridian plaue; then if flexure bc introduced, a t  every 

Fig. 4 I .  

zenith distancc there will be a deflection of the telewope out 
of the meridian. It has been shown Ly Sir George Airy 
(L l fo?~ th /y  fi t icea of fRe R. .4. S., January 1865) from me- 
chanical considerntions, that t being the zenith distance of tllc 
point to which the telescope is directed, this deflection is of tllr 
firm A sin ,- + B cos z, from which it fullows that the pat11 
traced by the centre threat1 is still a great cirrle. The polc 
of' this great circle, instead of being a t  the east point of the 
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horizon, will have azimuth 90" + a, and zeni t-h distance 90" + b, 

! 
where a and b are minute angles. Now when the transit is 
reversed in its Y's, the pole of the great circle described in 
this case is in azimuth 270°+a, and its zenith distance is, as 
before, go0+ 6. That is, the instrument, though i t  collimates 
on a horizontal point, ml l  not be in collimation at  the zenith ; 
there mill appear an error of the nature of a level error, 
changing sign with change of pivots, combining in fact with 
the error of inequality of pivots. 

The diagonal form of transit instrument, in which the rays 
of light instead of passing straight from the object-glass to 
the eye-piece are bent at  right angles by a prism in the 
central cube and so pass out at one of the pivots, is not so 
well known in this cotintry as in Germany and Russia. The 
advantagyea of this construction are, that the observer without 
altering his position can observe stars of any declination, that 
the uprights are short, and that the level can remain on the 
pivots as the telescope sweeps the meridian, nor need i t  be 
taken off on reversing the telescope. There is a special 
apparatus for rever~al; from very numerous observations made 
with oue of these transits the disturbance due to reversal of 
the telescope was found to be k 0".19 in azimuth, and k 0".13 
in level. But the effect of flexure in this instrument is very 
obvious. The weight of the telescope, the central cube, and 
t,he counterpoise, cause the prism to be displaced vertically 
downwards by a nearly constant quantity ; so that the image 
of a star in the field is always vertically below its proper 
place at  a distance, say f. Thus every micrometer reading of 
an object in the Seld requires a correction -f cosz; the 
magnitude off can be obtained by comparing the reading of 
the collimation centre, as determined on a hoiizontal mark, 
with the same as determined on a collimator in the zenith or 
at any zenith distance not near 90". To determine f in the 
case of a Russian Transit of this description employed for a 
time on the Ordnance Survey, a collimator was arranged so 
as to be capable of being set at any zenith distance whatever ; 
the resnlt from 172 observations was f = 3"-16 k 0"-04. In  
tile reduction of the observations, this quantity is added to 
difference of pivots, which in t,he same instrument was 
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0".65 $ 0''.02 (see a Paper on this subject in the Mem. R. A. 
Soc., Vol. xxxvii). 

Let + be the latitude of the place of observation, z, a being 
the zenith distance and the azimuth of an observed star S 
whose declination is 8, its hour angle being A. We shall 
suppose that h is zero a t  the upper culmination, increasing 
from 0 t,o 360" ; and that the azimnth is zero when the star is 
north, and increases from 0 to 360' in the direction from north 
to east. Then in the spherical triangle ZPS, Z k i n g  tbe 
zeuitli and P the pole, 

zp = 90'- +, PS = 900-8, 
PZ$ = a, ZPS = 360'-h ; 

and the following equations express z and a in terms of +,a, 8, 

cos z = sin b sir1 + + cos 8 cos + cos A, 
cosasinz = sinbcos@-cosbsin+cosh, 

(11 

sin a sin z = - cos b sin l r .  
If  T be the reading of the clock, r its correction, d the 

right ascension of the star, then the hour angle is given by 

h = 15 ( T + r - A ) .  

The equations (14) of spherical trigonometry express the 
influence upon z and a of variations in 4 9, and A ; thus, S 
being the padac t i c  angle, 

sinzda = - a n 8 d b + c o s b c o s S d h + c o s z s i n a d ~ ,  
cls = - cos Sdb -cos b sin Sdh- cos ad+. 

When the place of a star is required with great precision i t  
is necessary to take into account the effect of diurnal aberration, 
whereby the star is displaced towards the east point, e, of the 
horizon by the amount 0".311 cos @ sin Se, increasing thus 
the azimuth and zenith distance by quantities ba and bz, given 
by the equations, 

sinzba = 0"-311 ws+cosa,  
82 = 0".311 coa+sinacosz, 

which are eaeily verified geometrically. 
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Let the adjoining figure represent the celestial sphere 
stereographically projected on the plane of the horizon, nu 
being the meridian, we the 
prime vertical. Let p be the 
point in which one end of the 
axis of rotation of the telescope, 
whether of theodolite or transit 

6") 
instrument, meets the sphere. = -\ .. -? 
I t  is necessary to discriminate 
between which is this directly point opposite p and that to ewe 
it. As the telescope may be 8 

reversed in its Y's, we shall Fig. 42. 

suppose that in the case of the 
theodolite p refers to that Y which is to the left of the ob- 
server as he looks through the telescope; in the transit 
instrument p will correspond to that Y which is either near 
the north or near the east. The distance at  which n poitit is 
observed from the collimation centre, that of one of the side 
threads, for instaoce, in the transit instrument, is to be con- 
sidered positive when the image or the thread is 011 the same 
side of the telescope as is the divided or setting circle. If c 

be this distance, then, when the circle end of the telescope is 
on the Y corresponding to p, the angular distance of p from 
the point observed is 90°+c. Thus the thread defined by c 

will in the one position trace out a small circle SS whose 
radius is 90°+c, and when the telescope is reversed i t  will 
describe a small circle whose radius is 90"-c. Let a Le 
the azimuth nZp of p, Zp its zenith distnnce = 90"-6, so 
that I is the level error. Let a be the azimuth ~ L Z S  of an 
observed object 8, its zenith distance, Z S being = z. Then 
the triangle pZS in the case of the circle cnd of the axis bring 
next p gives 

the level error ncver exceeds a few seconds, so that cos 1= 1, 
and c is never so large that we may not substitute c for its 
sine, hence the above equation may bc written 
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from which 
c + 6 cosz 

a = a +  + 90". 
sin z 

Let another object, S, having azimuth a' and zenith dis- 
tance z', be also observed, then h' being the corresponding 
level error, and a' the azimuth of p, 

c+b'c0sz8 
d=a '+ - -  + 90"; 

sin i 

Neglecting quantities of the order b2, a'-a, which we have 
here replaced by A, is t,he difference of the readinga of the 
horizontal circle when tlie theodolite is pointed to 8 and S'. 
Suppose that S being a star, IY to the right of S is a terrestrial 
mark, then this equation gives the azimuth of the mark in 
terms of the known azimuth of the star, the angle measured 
by the theodolite, and the level and collirnation errors. The 
collimation must be eliminated by reversing the tdescope, 
and in computing L, the inequality of pivots must Le taken 
into account. 

If in the equation (3) me expand the cosine and substitute 
the values of sin z cos a and sin z sin a  from ( I ) ,  the result is 

c+bcosz+cosacos#sin8-cosa sin#cos8 cosh 
- sin a cos 8 sin R = 0, ( 5 )  

which equation will apply to the transit instrument in any 
position. I t  gives us in fact R, the hour angle of the star 
whose declination is 6 when observed on the thread defined 
by c. 

I n  observing transits i t  is usual to reduce the observed 
time of transit of a side thread to the time of transit over 
the collimation centre, or over the middle thread if that be 
truly collimated. When used in the meridian, the mean of 
the times of transit over the individual threads is taken, and 
this mean represents the time of transit over what may be 
called the mean thread. 

But when the inetrument is not in the meridian we can- 
not always so take the means of the times, as the time 
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int,ervals on the right and on the left of the centre thread are 
not equal. I n  order to determine the interval of time taken ! Iy n star to pass from the t,hread c to that thread for which 
c is zero, put' b = 0 in ( 5 ) .  And if again in this equation so 
modified we put c = 0, and write n' for h, the result is 

1 cos a cos + sin 8-cos a sin 4 cos 8 cos h'-sin a cos 8 sin V = 0 ; 
put A-h' = 2 I, h + h' = 2 HJ and the sum and differellce of 
our equations give 

2cosIcos8 (cosa cosHsin++sinas inH)  
= c+2cosa cos+sih8, 

2 sin Icos  r3 ( -cog a sin Rs in  r# + sin a cos H )  = c. 
Toke two subsidiary angles $ and G, such that 

sin $ cos G = sin a, 
sin$ Bin G = cosa sin +, 

COB $ = C08 a COS +, 
and substitute in the last equations. The result is 

2cosIcos8sin$sin(G+H) = c+2cos$sin8, 
2 s in Icos~s in+cos (G+H)  = c. 

Now eliminate G + H from these, and the result is a quad- 
ratic in sina 1. I f  we further put 

Csin($+8) = c = Csin($-a), 
the solution of the quadratic is 

+ sin I = ( W t  
(1 + c')) + (1 -C)i 

When the instrument is reversed the signs of C and C' are 
changed. This is the formula used by Bessel in the reduction 
of his transits in the prime vertical. When the transit is 
exactly in the prime vertical a = 0, and $ = r#, 

C C 
C= 

sin (+ + 8) ' c'= 
sin ($1-8)' 

4. 
When the transit instrument is in the meridian a is near 

90". I n  equation (5) for a write 90°+aJ rand suppose a to 
be so small that cosa may be put = 1 ; then also h will be 

G a d m w u n g  in Oatprcusacn, page 31 a. 

0 
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very nearly 0 or 180°, and we may put cos A = k 1. Thus 

for an upper transit, where the coefficient cos z of b has been 
replaced by cos (9 -8). 

For brevity let a, b, c now stand for the azimuth, level, and 
collimation errors, divided each by 15 to reduce them to the 
unit of seconds of time, then the correction to the clock time 
is, since ,',A = T t r - A ,  

This formula is known as ' Mayer's '; it has been put by 
Hannen in the form 

r = A-T+bsec$+ n(tanr3--tan$)+cseci, (a] 

which is easily verified, the value of n being b sin +-a cos 4. 
The last of these is specially convenient for the reduction 

of transits of stars near the zenith. On reversing the in- 
strument, which is done a t  least once or twice in each evening's 
work, the sign of c is changed, being positive for circle east 
and negative for circle west. The sign of b is positive when 
the cast end of the axis is high. In  these formuls, for lower 

• culmination (sub polo) 180'-8 must be written for 8, and 
1 zh + A  for A ; also A must be increased by Om-02 cos 4 sec 8 
for daily aberration when great precision is aimed at. The 
pethod of least squares is generally adopted for the deter- I 

mination of the azimutll, the error a t  a stated moment, and 
the rate of the clock; every transit giving one equation. 1 

In  commencing to observe with a portable transit a t  a new 
station, the first matter is to secure a very firm foundation, 
and to remove or reduce to a minimum the collimation error; 1 
then having placed the instrument as nearly in the meridian 
as can be done by any ready means of estimation, to level the 
transverse axis. If the clock error be known the observer 1 
bas merely to take a quick moving star of large zenith 
distance approaching the meridian, and follow i t  up to the 
moment of transit with the middle thread of the telescope. 
Suppose, however, the clock error to be unknown : in this case 
let two stars differing considerably in declination be observed, 
let the first give an apparent clock correction rl, and the I 



INBTBUMENT8 AND OBSERVING. 195 

second an apparent clock correction r,, then the formula 

- 
will give very approximately the real correction of the clock, 
which will serve for placing the instrument nearly in the 

I meridian. The formulm (7) or (8) show that stars near the 
zenith are best suited for the determination of the time when 
there is uncertainty of azimuth. For determining the mi- 
muth i t  is desirable to include in an evening's observations 
one or more transits of close circumpolar stars, even if ob- 
served only on one thread. In order to secure this the portable 
transit is sometimes used out of the meridian, namely, in the 
vertical plane pawing through a circumpolar star. 

The method of time determination by a transit instrument 
set in the vertical of Polaris is very generally adopted in 
continental Europe, baving the advantage of securing the 
knowledge of the azimuthal position of the instrument with- 

1 out any uncertainty, the transit of each time star being 
immediately accompanied by an observation of Polaris. The 
instrument, instead of being placed in the meridian, is placed 
with its centre thread slightly in advance of the position of 
Polaris, and accurately levelled. For this method of observing, 
the instrument must have a micrometer carrying a vertical 
thread across the field ; also it must have an arrangement such 
as the screw shown in the transit instrument fig. 41, page 188, 
for altering the position of the instrument by definite small 
quantities. Let m0 be the micrometer reading of the colli- 
mation centre of the instrument, m the reading of the star 
when bisected, if p be the value of one division of the screw, 
p (m -mo) will be the distance of the star, call i t  d, from the 
great circle described by the collimation centre. It is sup- 
posed that micrometer readings increase as the thread moves 
towards the circle-end of the axis. The method of arranging 
the observations would then be somewhat as follows, de- 
pending of course on circumstances of weather, t c .  : 

Circle East-Transit of a time star and two bisections of 
Polaris. 

Circlc West-Polaris, two time stars, and Polaris. 
Circle EasLTransit of a time star and bisections of Polaris. 

.o 2 
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These observations, supposed to constitute one complete 
time determination are to be accompanied by readings of 
the level. 

The azimuth and zenith distance of Polaris are to be com- 
puted and tabulated for every five minutes of time during the 
period the star is under observation. Let T' be the reading 
of clock corresponding to the observation of Polaris, r an 
approximate value, as near as can be obtained, of the clock 
correction, r +  A r  the real correction. Let the computed 
azimuth of the star corresponding to the time T'+ r  be a',,, 
then if be the change of azimuth for one second of time, 
a'o + 8 .  Ar will be the true azimuth of the star at  the moment 
of observation. I n  the equation (3) replace n by 90°+a, 
when i t  becomes 

Thus, for the position circle east, we get for the pole star 
and the time star respectively, 

bcosd d 
Polestar: a = a ' , , + B A r + -  +.- 

mnz' sln 
bcosz c 

Timestar: a =  180° + a +  -+ -. 
8111 2 ElnZ 

It is supposed that the level error b does not change 
between the observation of the time star and of Polaris ; also 
that c is the collimation error, either of the ' mean thread ' or 
of the centre thread, according to the manner in which the 
transits have been reduced: generally the reductions are 
made to the centre thread. The hour angle h of the time star 
and the azimuth are connected by the relation 

:. cos 8 sin A = sin z sin a  + (6 coa z + c) cos a. (1 0) 
If we put a, = cr', + c' cosec /, and 

cos 6 sin ho = sin z sin a,, (11) 
the difference of (1 0) and (I 1) gives 

where the factor cosa : cosA has been replaced by unity. If 
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T be the observed time of transit of the star, and A its right 

I ascension, T+ r + A r - A = 2% 8. Hence, finally, 

where y = 1 -,', B sinz sea 8, and b, c are expressed in 
seconds of time. The zenith distance of the time star is 

I given by 
z=+-8+4a2sin(+-8)cos+sec6.sinl", (13) 

where the azimuth a is expressed in seconds. 
The formnla (6) for the reduction of the time of transit 

over s side thread a t  the distance c from the centre thread 
gives in this case 

;x c (sec (6 +I) wc (8-%)I*, where n = a cos 9. 
The subject is fully treated in an essay entitled Die Zeif- 

bestimmung ~er~nittelst dee tragbare~~ DurcAgangsinstrumenEs  in^ 
PerticaEe des Polaratema, von W. Dollen, St. Petersburg. 
The method of reduction of the observations given above is 
virtually that adopted in the operations of determining the 
difference of longitude of Poulkowa (St. Petersburg), Stock- 
holm, and intermediate stations. Hem. Acad. Imp. &. St. 
Petersbmrg, Tome XVII, Nos. 1 and 10. 

If the vertical plane described by a transit instrument freed 
from level and collimation error be intersected once by the 
diurnal path of a star, it will be intersected a second time. 
Let li,, K be the hour angles corresponding to the two times 
of transit, then by (5) 

- cosacos+sinB + cosasin+cos8cosR, 
+ sin a cos 8 sin h, = 0, 

- cosacos+sinB + cosasin~cos6cosh'  
+sinacos8sinh'= 0 ;  

and from these we have 

tan8cos 4 (h,+hK) = tan+cos$ (4-h'), 
tan a = sin 9 tan 4 (A,+ i'). (I4)  

If the times of transit of a star be observed, giving h, and 
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A', the first equation gives a value of the latitude, and the 
second the azimuth of the plane. When the instrumeut is in 
the prime vertical, a = 0, and h,+h' = 0 ; if therefore A be 
the hour angle of the star at  either transit, tan + = tan 8 see A. 
The method of determining latitudes by observations of the 
transits of stars over the prime vertical mas originated by 
Bessel. A great advantage is the facility i t  offers for the 
c!limination of instrumental errors by the reversal of the 
telescope either between the observations of two stars, or 
even in the middle of the transit of a star, or by using the 
instrument circle north one night and circle soutll the next. 
But the disadvantage is that the method demands a very 
precise knowledge of the time, and i t  is better suited to high 
latitudes than to low ones. The error d$ of latitude, as de- 
pending on errors of 8 aud A, is given by the equation 

-- 2d8 
- t ankdh+-  

sin 2 r$ sin 2 6 '  

which shows that the hour angle, or the zenith distance of 
the star when observed, should be as small as possible. 

The equation (5 ) ,  if we make a a very small angle, applies 
to the case of transits in the prime vertical. Here b is posi- 
tive when the northern end of the axis is high. Putting 

cosa = 1, and cos8sinA= -sin2 

(when the azimuth of the star is very nearly go0), our equation 
becomes 

asinz+6cosz$c+cos$sin8--s in$cos~cosh=0.  (15) 

Let 9' be determined from the equation tan 9' = tan 8 sec 8 ,  
then if cp'-$ = E 

cos @ sin 8-sin 9 cos 8 cos h = c (sin + sin 8 + cos + cos 8 cos A) 

but the quantity within the last parenthesis is cos z ; hence, 

an equation which can be verified geometrically: z mu& be 
taken negatively for western transits. 

When the observed star is near the zenith there is time 
to reverse the instrument in the middle of the transit. Thus 
a star may be observed a t  its eastern transit on the north 



INSTRUMEXTS AND OBSERVINQ. 199 

side of the prime vertical upon those threads mhicli are to the 
south of the collimation centre; then, after reversing the 
instrument, the star may be observed again on the game 
threads. Leaving the telescope in the last position until the 
star comes to the western transit, i t  is observed again on tlie 
same threads to the south of the prime vertical, and then 
reversing the telescope the star again crosses the same threads 
on the north side. Thus each thread gives a latitude deter- 
mination freed from instrumental errors. Let I be the angle 
corresponding to the interval of time between two transits 
over one thread on the north side, I' that corresponding to 
the observations on the same thread on the soiith side, H cor- 
responding to the difference between the star's right ascension 
and the mean of the four times of transit, then either by (1 5) 
or geometrically, we get 

cot (+- 6) = cot 8 cos f (I+ 1') cos ) (1'-I) sec H. (1 7) 

But practically this requires rather too many reversals of tlle 
instrument. I t  is probably best to select a number of stars 
for which 4-8 does not exceed 2 3  such that they can be 
observed first on the east side of the zenith, circle N. say, and 
again on the western side, circle S. Then on the next night 
in t.he positions E. circle S. and W. circle N. 

For this case of very small values of ,p-4 if me put e for 
4 (+ - cosec I", and calculate e, which will be less than 
1".5, from an approximately known value of 9, then the 
equation (15) may for the two observations of the star E. and 
W. be written thus for each thread : 

,p-a-c = - h 
sin,pcos88in2-+asinz+h cosr+e ,  

sin 1" 2 

where the unit is 1". From the mean of these c is eliminated, 
and since z' differs but little from -2, a enters with a small 
coefficient. The value of a for the evening's work may be 
obtained thus: suppose the two equations just written down 
to appertain to the centre thread, then a and c remaining 
symbolical, the difference of the equations will give one of the 
form c + a sin z = g. Each star will give one such equation. 
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The determination of latitudes for geodetic purposes is 
effected by one or other of the following methods: (1) deter- 
minations of the meridian zenith distances of stars ; (2) by 
zenith distances of Polaris, a method which has the advantage 
that the observations may be made a t  any part of the star's 
apparent orbit, and by day as well as by night; (3) by 
transits in the prime vertical ; (4) by the zcnith telescope. 

I n  the first method i t  is desirable that stars be observed 
equally on both sides of the zenith, so that in the end the 
mean of the zenith distances may be nearly zero. When the 
star is observed a t  a small hour angle from the meridian- 
which should not be done in the case of stars near the zenith 
-if z' be the meridian distance, z the observed zenith dis- 
tance, A the small hour angle from culmination, then 

2cos$cos8 sina * A  
d = a +  

sin (i + a) 
3 (18) 

the upper sign applying to upper, the lower sign to lower 
culminations. This formula includes the tern in h4 ; on the 
right side of the equation z' is to be obtained from the ap- 
proximately known latitude. 

In  the hands of an expert observer it is certain that very 
excellent results for latitude can be obtained from small 
circles. The latitudes of the greater part of the stations in 
the Russian arc were determined with circles of 11 inches and 
1 4  inches diameter. We have described the instrument used 
in the Spanish geodetic operations. The following results for 
latitude a t  three different stations by three different methods 
are interesting : 

METHOD. 

Polaris ... ... 
Other stars ... 
Primevertical 

L L A ~ A ~ ,  
43O 29'. 

DIEQO GOY=, 
40° 55'. 

-- 

No. of 
Days. - 

5 
5 
4 

No. of 
Days. - 

5 
5 
6 

8econds 
of latitude. 

,I 

a8.785.10 
29-oa+.~o 
ag45+.1j 

C o ~ ~ n s o a ,  
36" ++I. 

Seconds 
of Latitude. 

,I 

39.11+.10 
38.26+97 
j8.4ak.11 

No. of 
D a p .  

5 
9 
6 

&con& 
of Latitude. 

I 

aa.41+.10 
Z I . ~ ~ + . I O  
aa.4jk.12 
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I n  the case of the second station there is a difference 
between the results given by the first and second methods 
amounting to 0"-85. This, however, is not much greater than 
the difference between the latitudes of Balta as obtained from 
the zenith sectors of Ramsden and Airy. 

I n  the zenith telescope let us suppose the micrometer 
readings to increase as the zenith distance decreases. The 
instrument being set, approximately, to the mean zenith 
distance of a pair of stars about to be observed, and the level 
indication being zero, let z, be the angle made with the 
vertical by a line joining the optical centre of the object glass 
with a point in the centre of the field whose micrometer 
reading is m,. It is presumed that during the short period of 
time required to observe a pair of stars the relation of the 
level and telescope remain unchanged ; hence, if when one of 
the stars--as the north star-is observed, the north end of 
the level has the reading n, while the southern has the read- 
ing s, then the zenith distance of the point m, is zo + + (s - 74), 

the level readings being converted into angular measure. 
Let 

a' 6, be the declinations of N. star and of S. star. 
d m ,  micrometer readings of N. star and of S. star. 
R R ,  refractions for N. star and for S. star. 
n' a' level readings for N. star. 
%,a ,  ,, 9, ,, S.&r. 
p h angular values of one division of micrometer and 

level. 
Then the apparent zenith distances of the stars are 

and eliminating z, and m,, 

Q = a(af+6, )+ap(m'-m,)+th(d-a '+n, -s , )  
-4 (E-a,). (20) 

Here i t  is supposed that the observation is made on the 
centre thread, and that the instrument is in the plane of the 
meridian. If the micrometer bisection is made when the star 
is on a side thread at  a distance c from the centre thread, the 
correction + 4 cZ tan i is required to the zenith distance ; the 
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uppcr sign for south stars, the under sign for north stars. 
Thus the above expression for C$ requires the addition of 
+ 4 (d + c,), where c', c, are the corrections on the north and 
south stars respectively. 

I f  a star be followed with the instrument out of the plane 
of the meridiau and observed on the centre thread, a cor- 
rection of the form (18) is required. 

For determining the value of p, the instrument is set to 
the zenith distance of the pole star at  its greatest azimuth, 
and directed to the star half-an-hour or ao before the time of 
greatest azimuth. The micrometer screw is set at  successive 
single revolutions in advance of the star, and the corresponding 
times of vertical transit observed ; the level is also read at  
each transit. Let z' be the zenith distance of the star a t  one 
of these observations, ( being that at  the time of greatest azi- 
muth. If R be the reflaction corresponding to (we may put 

I?-R = p(d-0; 
also in the first of equations (19) put zo+ R = (-0, and 
write k for 6'-rp, then expressing d-C in ~econds, 

p(m'-mo)+x+(i-()(I-p)+ ah(n'-8') = 0. 
Each observed transit gives an equation of condition of this 
form. The solution by least squares is simplified by sub- 
stituting M +  y for the unknown p, where M is an ap- 
proximate value, and y the required correction : t - ( is easily 
calculated from the recorded time of observation. It is 
supposed in these formula that the instrument is used with 
the micrometer screw below, as represented in the drawing. 
It may, however, be used in the other position, in which case, 
the sign of p being changed, the formula? still apply. 

I n  the two instruments used on the Ordnance Survey the 
values of one revolution of the micrometers are 

62".356 2 08'.003 and 63"-325 k 0".006, 

derived in each case from the combined observations made at 
six stations. 

The lists of stars prepared for these instruments comprised 
from thirty to fifty pairs for each night, and of these a con- 
siderable proportion were found in the Greenwich and Oxford 
Catalogues, though some stars were dependent on the British 
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Association Catalogue places. The following table contains 
the final results for latitude a t  the station, a summit of the 
Grampiam, where the smallest number of stars mas observed : 

I. 
11. 
111. 
IV. 
v. 
VI. 
IX. 
X. 
XI. 
XII. 

XIII. 
XIV. 
XV. 

XVI. 
XVII. 

XVIII. 
XIX. 

Daily 
400 I 

Latitude 56" 58' 4of'.13 + 01'.08. 

The simplicity of construction of the zenith telescope ex- 
empts i t  from several of the recognised sources of instrumental 
error, while its portability and ease of manipulation eminently 
fit i t  for geodetic purposes. It is exclusively adopted for lati- 
tudes in the United States, and it is probable that no one who 
has used it would return to graduated circles for latitude. 

The form of the expression for the latitude as determined 
by the zenith telescope shows that the error of a single result 
is affected by the errors in the assumed declinations of two 
stars, by the errors of two bisections of these stars, and by 
errors in the assumed values of the micrometer and level 
divisions. The last two eources of error can be made very 
small. The discussion of a large number of observations 
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shows that the probable error of olaervatwn on& in a single 
determination of latitude from a pair of stars ie between 

&0".55 and +0".65, 
according to the skill of the observer and the sensitiveness of 
the level of the instrument. Hence, if el, d be the errors 
of the declinations of two stars, and they be observed se times, 
the error of the resulting latitude may be expressed by 

If E,, d be the probable errors of the declinations, then the 
probable error of latitude resulting from s observations of 
this pair is 

Henoe, in combining the results given by pairs of stars, the 
weight to be given to each result may be taken ae 

The probable error of a declination will depend on the 
catalogue from which i t  is taken; from the Nautical Almanac 
or Greenwich Catalogueta 6 may be about k 0".6, but from the 
British Association Catalogue i t  would be probably double 
that amount. 

I n  the official Report on the North American Boundary, 
the subject is very fully discussed. In  those operations the 
probable error of a single determination ie in several caw 
lea than + 0".3. 

The method that has been generally followed for tho deter- 
mination of absolute azimuth in thie country is the measure- 
ment of the horizontal angle between a terrestrial mark and a 
close circumpolar star, when a t  or near its position of greatest 
azimuth. The practice in  other countries, as in R d ,  in 

Reports upon tha Surrey of ths Bwndary between the Territory of th 
Unilcd St& and the P m d ~  @ ( f r a t  Britain. Wmhington, 1878; pp. 
95-169. 
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Spain, and in America differs from this only in that the 
observations are not always confined to the position of 
greatest azimuth of the star. The most frequently used star 
is Polaris, then 8, c, and h Urs. Minoris, 5 1  Cephei, and others. 
The formula (4) shows that the level and collimation errors 
enter with large fsctors, large at  least in high latitudes; 
therefore it is necessary to determine the collimation before 
and after the star observations, and the level must be read in 
reversed positions during the observations. The error of 
level must be scrupulously kept as small as possible, and the 
value of one division of the level should be known at  all 
temperatures. The difference of pivots must be accurately 
known, but no instrument with irregular pivots is fit for this 
work. The terrestrial mark-not less than a mile off-is 
generally for night work a lamp behind a vertical slit: the 
opening is sometimes covered with oiled paper. 

There are slight differences of detail in the modes of con- 
duding the observations, but the following may be taken as 
virtually the ordinary procedure. The level being on the - axis, and the instrument, say circle west: (1) the mark is ob- 
served ; (2) the star is observed; (3) the level is read and 
revelseed ; (4) the star is observed a second time ; (5) the level 
is read; (6) the mark is observed. The telescope is then 
reversed, and with circle east the operations just specified are 
repeated. The double operations complete one determination 
of the angle. . The chronometer times of observation of the 
star are noted for the calculation of its azimuth. As in 
terrestrial observations the errors of graduation are eliminated 
by shifting the zero of the horizontal circle. 

The probable error of a determination of azimuth increases 
mith the latitude : i t  may be expressed by the formula 

r = + Ja4 + ba tan4 4. 
In the azimuth determinations by Struve in connection with 
his great arc of meridian, the probable error of a single deter- 
mination (as just defined) increased from + 0".75 in latitude 
45' to k 1".98 in Finmark. The determinations of azimuth 
in the recent geodetic operations in Spain, effected mith 
theodolites of Repsold, are excellent. I n  the triangulation 
of Great Britain azimuths were determined a t  sixty stations; 
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a t  twelve of these the probable error of the final result is 
under k 0".50, and a t  thirty-four, under k 0".70. Generally 
speaking, in these observations the observer has had only an 
approximate knowledge of the time, and hence a t  each 
greatest azimuth of a star only a single determination was 
effected : each observation since the year 1844 has been cor- 
rected for level and collimation errors. At fifty-seven stations 
out of the sixty the observations were made by N. C. Officers 
of Rogal Engineers. 

In Colonel Everest's work in India i t  was the rule to take 
four measures circle east and four circle west, a t  each zero, on 
each ~ i d e  of the pole: the number of zeros mas four, making 
in all sixty-four measures as sufficient. But this number was 
often exceeded. 

Another method of determining absolute azimuths is by 
erecting a mark either to the east or west of nor th-or  
one to the east and another to the west-in such positions 
that the pole star shall cross the vertical circle of the mark a 
little before and a little after its greatest azimuth. The 
observations are made with a transit instrument furnished 
with a moveable vertical tliread for micrometer measurements. 
The instrument is set with the centre thread nearly on the 
mark, then the telescope being elevated to the star at the 
proper time, the star will move slowly acmss the field. Read- 
ings of the micrometer thread-on the mark, the star, the 
star, the mark are taken, and combined with level readings in 
reversed positions. This operation is repeated in the alternate 
positions of the instrument circle east, circle west. The 
observations should be so arranged that the star is taken as 
much on one side of the field as on the other ; thus the final 
result will be nearly independent of the assumed value of a 
division of the micrometer. 

Let p,, be the micrometer reading of the collimation centre, 
p that of the star, p0 that of the mark : suppose these readings 
to increase as the thread moves towards the circle end of the 
axis : also let d be the angular valpe of a micrometer division, 
then in accordance with equation (3) we have 

(p  -&) d+ b cos z +sin z cos (a -a) = 0, 
(p'-p,,)d+t cosz'+sinz'cos(aO-a) = 0 ;  
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and hence, since a-a' is only a few minutes, 

( P - P , , ) ~ +  ( ~ ' - d a  - sin (z'-z) ;=a----- 
sin z sin d ' sin z sin d (21) 

1 The following table contains the results for azimuth at a 
1 station in Elginshire, in latitude 57' 35'; the observations 
I mere made with the Russian transit instrument previously 

alluded to. Each figure is a complete single determimtion, 
including Loth positions of the instrument, in the manner 
described :- 

Hence we have the azimuths-reckoned from the south, 

North West Mark .. . 1 77' 45' 37".6 1 ? 0"- I 9, 
North East Mark ... 182°17 '15"~37~0" -11 ,  

1868. NORTH WE~T MABK. Az. 177' 45' ... 

In  the case of the first mark the probable error of a com- 
plete single determination is * 0"-820, and for the second i t  
is k O"e489. The difference in the precision of the results is 
due to the circumstance that the former mark was observed 
in the morning twilight, sometimes with a lamp, and with 
difficulty ; the latter mark was observed in good daylight in 
the afternoon. The observations were made (in stormy 

Oct.14. 
-- 

3;.'1 I 

36 50 

Oot. 16. - 

3&6 
37.11 
37.21 

NORTH EAST MARK. Az. 182' I? ... 

0 c t . a ~ .  
- 

37:4 
35.85 
38.4 
36.98 

Od.ao. 
- 

36.\0 
35-13 
38.43 

Oot.17. 
- 

35188 
'38.90 

Oct.16. 
- 

3;198 
39.13 
37.65 

Oct.18. 
- 

3879 

Oct. 16. 
-- 

15-13 
15.75 

Od. 17. 
- 

, 
15.04 
16-13 

Oct. as. 

, 
14.89 
14.83 
14.50 
15.64 
16.97 

Oct. 21.  

, 
16.31 

Oct. ao. 
- 

,I 

14.01 
15.36 
15.40 

Oct. a3. 
---- 

I 

16 40 
15.66 
15.ag 
'499 
1467 
'5 00 
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weather at  a height of 1100 feet) by Quarter-Master Steel 
and Serjeant Buckle, R. E., and indicate both expertness in 
the observers and perfection in the instrument. 

If in co~lnection with the observation of the star its re- 
flection in an artificial horizon be observed, then the level 
may be dispensed with, unless indeed the zenith distance of 
the mark differ materially from 90". As the spherical co- 
ordinates of the star are a and z, so those of its reflected 
image are a and 180'-z; and if p, p, be the readings of the 
star and of its reflection, 

neglecting the small change of zenith distance between the 
two observations. From the mean of these b disappears as 
far as the star is concerned, and 

d-lbd- i ( p + ~ ) - l b ~ + ~ ~ ~ ~ / .  a f = a  + - 
sm z' sin z 

The azimuth of a circumpolar star at  any point of its path 
may be obtained from the formula 

tan a -- sin H sin f i  
tanA - 1-cosHcosh' 

where H is the hour angle corresponding to the maximum 
azimuth A. Or if the observations of the star are confined to 
times within an hour of the greatest azimuth, the formula 
(23), page 46, is sufficiently accurate-and even in this, if the 
star be within 20 minutes or so of its greatest azimuth (this 
depends on the latitude of the observer) the denominator of 
the right side of the equation may be replaced by unity. 

The azimuth obtained from observations of the pole star 
requires the correction + 0".311 on account of diurnal aber- 
ration. 

For the determination of the difference of longitudes of two 
stations for geodetic purposes the lunar methods are not 
sufficiently precise. The requirements of the case are in one 
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sense simple: the correct keeping of the time a t  A, the same 
at B, and some means of comparing simultaneous readings of 
the clocks a t  A and B. The extended system of electric 
telegraphs, now in use in all countries, affords the most pre- 
cise mode of comparing local times : the details of the method 
will be found in the U. S. C. Survey Reporb for 1857, 186 7, 
1874 ; in the Repo7.h of the Surveyor- General of India ; in the 
Bnnales de Z'obsmaloire Impdrial de Park, vol. viii ; the Mi- 
wriaZ d~ Dkfl gknk7al de la Guerre, vol. xi ; the Publicatim 
dm Kiippigl. Prwskchen QeodiitkcAen Instikh, Berlin, 1876; 
and other works. 

The method of recording time and astronomical observa- 
tions on a revolving cylinder originated in the U. S. C. Survey 
in the first attempt to determine longitude by electro-mag- 
netic signals. Bond's chronographic register is a cylinder of 
about twelve inches long by six inches diameter : i t  revolves 
once per minute, a uniformity of velocity being secured by a 
centrifugal fly-regulator in connection with a pendulum. As 
the cylinder revolves i t  is drawn uniformly along a screw- 
formed axis : its surface is covered with paper, removeable at  
pleasure, and a pen held in contact with the paper under the 
influence of an electro-magnet draws on the paper a con- 
tinuous spiral. The galvanic circuit passing through the 
clock is broken every second by the clock: this break, the 
duration of which is regulated to about one twentieth of a 
second, demagnetises the electro- 
magnet, and the pen under the 
influence of a spring draws a 
small offset at right angles to 
the continuous spiral : thus the 
beats of the clock are trans- 
formed from audible to visible 
intervals or signals. The man- 
ner in which the clock breaks Fig. 43. 
the circuit will be understood 
from the adjoining figure, in which PP is the pendulum-rod, 
B a brass plate carried by the back of the clock-case from 
which projects a braas arm carrying an ivory bracket I. To 
this is a fbed  and adjusted a very small tilt-hammer of 

P 
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platinum, of which the left hand end rests on a metal disk 
plated with platinum, connected with B and the line wire w. 
A fine pin projecting from the pendulum rod st.rikes the 
obtilse angle of a small bend in the tilt-hammer, and for an 
instant as the pendulum passes its lowest position tilts up the 
left end of the hammer, so breaking the circuit. 

A signal key under the hand of the observer enables him 
also a t  pleasure to break the circuit in the same manner as 
does the clock; thus, the instant of a star passing a thread of 
the transit instrument is recorded on the chronograph by an 
offset. The offset of the observer is readily distinguished 
from that of the clock by a difference of form. A small 
portion of the register has something of this appearance- 

It is the breaking of circuit whether by clock or observer 
that constitutes a signal, hence, in reading off the chrono- 
graphic recorll i t  is the right hand or first edge of the offset 
that is used in subdividing the seconds. I n  order to facilitate 
the reading of the time, one second, viz. that numbered 60 is 
omitted in the chronograph every minute, and also two 
seconds are omitted every five minutes. This omission is 
effected by means of a very ingenious arrangement whereby 
the clock itself completes the circuit a t  those instants. 

To detcrmine the difference of longitude of two stations, A 
and B, there must be a t  each an astronomical clock, a chrono- 
graph and a transit instrument. The transit instruments 
used-with the most excellent results-in Paris and Algiers, 
for the recent determination of the difference of longitude of 
those places have telescopes of 31 inches focal length and 2.5 
inches aperture ; they are in fact meridian circles, the dia- 
meter of the circle being 16 inches. Those used in India are 
much larger, viz. 5 feet focal length of telescope with 6 
inches aperture, but i t  is certain that the precision of resulta 
does uot keep pace with increase of dimensions. From a 
discussion of a very large number of observed transits in the 
U. S. C. Survey it was ascertained that the probable error of 
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an observed transit (chronographic registry) over a single 
thread, the star's declination being b, was expressed by 

c = + ((0.063)' + (0.036)' tan' b y  

or 
t 

F = f ((0.080)' + (0.063)' tan' b) , 
the former applying to instruments of about 4 7  inches focal 
length, the latter to a focal length of 26 inches. 

A much more formidable source of error is 'personal 
equation.' Every observer hae his own peculiarity of habit 
in observing and recording transits which takes the form of 
a ' personal error.' In the eye and ear method a certain small 
error exists in associating the position of the star in the field 
with the audible beats of the clock, the eye and ear not 
acting in simultaneous accord: moreover, this may be com- 
bined with an erroneous habit of subdividing seconds. I t  is 
probably due in part to the same species of error of vision 
which will cause one observer with a microscope to bisect a 
line on a standard measure differently from the bisection of 
another observer, a difference which is tolerably persistent. 
In the chronographic method of recording observations, per- 
sonal error also exists, referrible to peculiarity of vision and 
manner of touching the signal key. Personal error may be 
affected by the brightness of a star and its velocity, i t  cer- 
tainly is affected by its direction of movement, north stars 
and south stars giving for some observers different personal 
errors. In those instruments in which the rays of light are 
turned through a right angle by a central prism, the personal 
error lias been found to be different in the two positions, east 
and west, of the eye-piece. 

The investigation of personal error is therefore one of the 
most important elements in the question of longitudes. The 
ordinarily practised method of ascertaining relative personal 
error of two observers, A and B, is this : they observe  transit^ 
of the same star in the same instrument. A observes the 
first star over all the thrends before it arrives at  the centre, 
B then observes the same star over all the remaining threads. 
For the next star, B observes in the first half of the field, .-1 
in the secoud half, acd so on alternately. The observation iu 

P 2 
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this manner of a large number of stars, in which those north 
of the zenith are to be separated from those south of the 
zenith gives the difference of the personal eqnations of A and 
B. Unfortunately personal equation is not altogether con- 
stant, depending on the nervous condition or state of health 
of the observer. 

The threads in transit instruments used with chronograph 
registry are generally numerous-for instance, they are often 
arranged in five groups of five, the members of a group being 
at  the equatorial interval of 2O.5: in fine weather the three 
centre groups are found sufficient for observing. 

Supposing the apparatus and instruments to be in perfect 
adjustment, the observations for longitude each evening are 
preceded by observations of transits for the determination of 
instrumental errors and clock error : say six or eight zenith 
stars with one or two circumpolars and two reversals of the 
instrument. The clock at  the eastern station A is then put 
in connection with the circuit and graduata the chronograph 
at  A and the chronograph at  B. The observer at  A on the 
arrival of the first star on the list of signal stars made out for 
the longitude work, observes its transit, his signal key mark- 
ing i t  both on the chronograph a t  A and on that at  B. On 
reaching the meridian of B the same star is observed in the 
transit instrument there and is recorded by the observer on 
the chronograph a t  B and on that at  8 :  and so for the other 
stars. When half the evening's work is done the clock A 
is disconnected from the circuit and replaced by that at  B. 

Each star gives thus a difference of longitude on each 
chronograph, a result independent of the star's place. The 
difference of longitude given by the western chronograph will 
be too small by the interval of time occupied in transmission 
of the signals, that at  the eastern will be too great by the 
ssme amount. Hence, in taking the mean of the two chrono- 
graphic results this small interval is eliminated, provided the 
etrength of the butteries has been kept constant. But the 
result is still affected with personal error of the observers. 
This may be eliminated by the interchange of observers when 
the station is half completed. 

When the stations are very fir apart this method becomes 
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impracticable, and the following is that adopted. After the 
necessary observations have been made for the determination 
of clock error at each station, the eastern clock is first put 
into connection with the circuit, so as to graduate both 
chronographs: then that a t  the western is put into circuit 
and also graduates both chronographs. The western chrono- 
graph wil? give the longitude too small by transmission time, 
the eastern gives i t  too large by the same amount. The 
observers, each with his own instrument and apparatus, are 
collected (either after or before, or both) into one spot, and 
determine the difference of longitude of their respective 
instruments. 

In  a very interesting account by J. E. Hilgard, Esq. of the 
transatlantic longitude work in 1872, we find the following 
statement of the results of three determinations of the longi- 
tude of Harvard College Observatory, Cambridge, U. S., west 
of Greenwich : 

h. m. B. 0. 

By Anglo-American cables in 1866 . . . 4 4 4  30.99 + 0.10. 
By French cable to DuxLury in 1870 . . . ,, ,, 30.98 k 0.06. 
By French cable to St. Pierre in 18 72 . . . ,, ,, 30.98 k 0.04. 

A very extensive series of longitude determinations has 
been carried out recently in India with most admirable pre- 
cision under the direction of M.-General Walker, C.B., F.R.S., 
Surveyor-General of India. I n  his yearly report for 1877-78 
are found the results of 
eleven differences of longi- 
tude by electro-telegraphy BRv H 
with the corresponding 
geodetic differences. They 
are between Bombay (B) v I.  
and Mangalore (N) on the 
west coast, Vizagapatam 
(7) and Madras (M) on N .U 
east coast, and Hydrabad R 

(H), Bangalore (R), and Fig. 45. 

Bellary (L)  in the interior. 
The eleven lines observed are drawn in the diagram. I n  every 
triangle it will be noted there is a check on the accuracy of 

* 
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the work : thus, referring to difference of longitude, the 
triangle LBM gives L M = LR + Rbl. ' When thc opera- 
tions were commenced,' says General Walker, 'I determined 
that they should be carried on with great caution, and in 
such a manner as to be self-verificatory, in order that some 
more ~at isfacto~y estimate might be formed of the magnitudes 
of the errors to which they are liable than would be afforded 
by the theoretical probable errors of the observations. . . the 
simplest arrangement appeared to be to select three trigono- 
metrical stations A, B, C, a t  nearly equal distances apart on a 
telegraphic line forming n circuit, and after having measured 
the longitudinal arcs corresponding to AB and BC to meamre 
AC independently as a check on the other two.' The follo~.- 
ing table contains the observed differences of longitude :- 

Mdraa-Bangnlore . . . 
Bangalore-Mangalore . . . 
Hydrabad-Bombay ... 
hllary-Bombay . . . . . . 
Hydrabad-Bellary . .. 
Mwlrae-Hydrabad . .. 
Ms~lrae-Bellary ... .. . 
Bangdore-BrUnry . . . 
Vizngaptam-Madraa . . . 
Vizagapakm-Bellary . . . 
Mangalore-Bo~nbay . . . 

The first two determinations were the earliest made, and 
xire affected with some fault in one of the transit instruments 
not fully known a t  the time, hence these have less weight 
than the others. 

With respect to the corrections in the last column, these 
arise in the following manner: i t  will be scen that the  figure 
presents four triangles and a quadrilateral, each of these five 
presents a condition to be fulfilled by the observed longitudes. 
Suppose that in consequence of errors in the concluded results 
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they require corrections x1 . x2.. . xll in the order in which they 
JUW written down Take for instance the triangle BLH, the 
s u m  of the fourth and fifth observed differences of longitude 
should be equal to the third, that is, 

5'42' 1 2 " . 6 4 $ ~ , + ~ ~  = 5'42' 12".74+xS; 

hence a linear relation between x3, x,, and x5. The following 
equations can be thus verified : 

x l -9  + x8 - 2-36 = 0, 
x , + x ~ - x ~ ~ - O . ~ ~  = 0, 
x6+x6-x, ++I8 = 0, P3) 

-xs+x4+xs - 0.10 = 0, 
-x2+x4+x8-xn+ 2.77 = 0. 

Now the a's cannot be determined from thew equations. 
But the theory of probabilities shows that the values which 
are the most probable are those which, in addition to the con- 
ditions above, make the function 

a , x ~ + a , x ~ + x ~ +  ... xl10 

s minimum. Here the symbols al, n, are the weights of the 
first two determinations, those of the remaining nine being 
taken as unity. We cannot assign precise values to a,, a,, we 
shall assume them to be each = f .  

Proceeding by the ordinary method of the differential 
calculus, multiply the equations (23) severally by indeter- 
millate mu1til)liere ul, u, ... w5,  then we get 

Xl=2u1, x2=-2us,  xg=-U4, 

and so on. Substitute the equivalents of a, ... x,, so expressed 
in terms of u, ... u6 in the equations (23), they are thus trans- 
formed to 

421,- u,+ u, ...... + u,-2.36 = 0, 
- u , + ~ u , -  u, -0.61 = 0, 

ul- u,+3u,+ u, +0.18 = 0,  

u,+ 3u4+ us- 0.10 = 0, 
(24) 

u, ............ + u4+5u,+2.77 = 0. 

... Solving these equations we get num6rical values of u, us, 
... whence immediately follow those of x, x,,. These are 

written down in the last column of the table. 
The smallness of the corrections is abundant proof of the 
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remarkable precision attained in these observed differences of 
longitude. 

I n  volume xi. of the Mein. dv DL$. gkn. de la Guerve will be 
found a valuable account, in full detail, by M. le Commandant 
Perrier of the operations for determining the difference of 
longitude of Paris and Algiers by means of the submarine 
cable connecting Algiers and Marseilles : the daily results 
collected at  page 167 stand thus : 

m. 8. 8. m. 8. 8. 

NOV. 2, 2 50.372+0.049 ; NOV. 17, 2 50.355k0.021 ; 
,, 3, 2 50.284*0.050; ,, 23, 2 50-318+0. 25; 
,, 6, 2 50.298&0.047; ,, 24, 2 50-295k0.025; 
,, 7, 2 50.338+0.046; Mean, 2 50.326kO-010. 

This result requires the correction of -01.093 for personal 
errors of the observers. Hence tlie difference of longitude is 
2" 5O1.233. A check upon this is afforded by the inde- 
pendently observed differences of Paris-Marseilles 

12" 13'-435&0'.011, 

and Marseilles-Algiers 
grn 23'-219k 0'-011, 

of which the difference is 2" 501.2 16 +_ On.016, differing only 
On.017 from the direct result. 



CHAPTER IX. 

CALCULATlON OF TRIANUULATION, 

IF tile observed angles of a triangulation were exempt 
from error, the calculation of the distances between pairs of 
points would present no di5culty. But the errors with 
which every observed angle is burdened lead to conflicting 
results, and i t  becomes necessary to find a systematic method 
of treating these errors. In the case of a single triangle, if 
the three angles were equally well observed, and if the sum 
of those angles exhibited an error of, for instance, + 3", we 
should naturally and rightly apply to each observed angle 
the correction -1": or if they are observed with unequal 
precision then we know by the method explained in the 
chapter on least squares how to divide the error among the 
angles. Still this applies generally only to isolated triangles, 
and it mill be necessary to consider other combinations of 
points and angles. 

Consider first a polygon of i sides represented in the an- 
nexed figure. Suppose that 
each angle in each of the i 
triangles is observed with 
an equal degree of pre- 
cision. In  each triangle 
the sum of the observed 
angles will show a certain 
amount of error, also in 
adding up the angles at  
the central point P the 9 Pa 
sum will differ slightly Pl 

from 360'. Moreover, if Fig. 46. 
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we start with the side PP,, and calculate in succession the 
sides PP,, PP,, . . . PE, f i d l y  rsknning to PP, we shall find 
a difference between the length of PP, so calculated and &st 
with which the calculation was commenc~d. This numerical 
difference is a function of the errors of observations: we 
have iu fact i + 2 numerical values of as many functions of 
the 3 i  observed angles. We shall adopt the following 
notation- 

A,, B,, C, the true angles of the first triangle ; 
A,', B,', C,' the observed angles of the same; 
el ,  ji, g, t.he corresponding errors of observation ; 
xl , y,, 2, the corrections to be computed ; 
a,, B,, &, the finally adopted angles. 

For the nth triangle the subscript unity is replaced by 
n. Thus 

A,,' = 4 + e , ,  an = A,+ en+ 
B,,' = B, +f,, B* = B,+f,+y, ,  
c; = c,+9., &.= c ,+g,+zn.  

We propose to investigate the most   rob able values of the 
corrections which should be applied to the observed angles. 

Put a,, a,, fi for the cotangents of A,, B,, C,, and further 
let 

2a1+/3, = q ,  -al-2B1 = b l ,  -%+PI  = e l ,  

so that q+b ,+c ,  = O. I n  the nth triangle let the sum of 
the observed angles exceed the true sum by r, ,  also let the 
sum of the observed angles at  P be 360°+ co. Then we have 

en+fn+gn=rn, g l + g 2 + m . * g i = r ~ ~  (1) 

in all i+ 1 equations. We may express each g  in terms of 
the corresponding e and f, and substituting iu the last eqm- 
tion i t  becomes 

e , + f , + e , + f , +  ... e , + f ,  = - r , t r l + r 2 +  ... r,. (2) 

Then we have the further geometrical condition 

PP, PP, PP, sinB, sinB, sinB, --.- . - . . .  - - . - . . .  - - 
Pi', PP, PP, siu A, sin A, sin Ai'  

each side of this equation being unity (in spherical triangles 
we have merely. to write on the left . . side sin PY, instead of 
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PP,, kc.). The observed anglee however will not fulfil this 
condition. Suppose the calculation made with the angles A', 
B'. . . , and that the result is 

sin B,' sin B,' . . . sin Bi 
= l t c ,  sin A,' sin A d . .  . sin A; 

where a is a very small quantity. Then since 

-- sin Bl sinBl' sin', ('+&-A) = ( l - a l e l + p l ~ )  - 9  

sin A,' - sin A1 ( 1  + a1 e l )  

it will follow that 

-alel+Plf,-a,e*+P2f*-... -a,e*+Ptfi = € 9  ( 3 )  
Now since the adopted angles B, 16, & are to fulfil all the 

requirement8 of the case, it follows from ( 2 )  and (3) that 
X ~ + Y ~ + X ~ - I - Y ~ +  ...Xi+Yi = *o-C1-$ - E i ,  

- ~ ~ ~ i + + 8 1 y ~ - % * ~ + P 2 . ~ z -  ... -a,~i+Pi.Yi = - c ;  ( 4 )  
and also from ( 1 )  

We have now to find such values of rc,, y , ,  x2, y,, kc. as 
being sulject to the necessary conditions (4) shall further 
render the fi~nction 

2 Q  = xlz + y14 + (xl +y l  + al)' + + y 2  + (x2 + y2 + a,)' + . . . 
a minimum. Differentiating this equation, the condition of 
minimum is 

+(2;th+y2++J)~2 ... . 
Differentiate the equations (4), and having multiplied them 

by multipliers 3 Q and 3 P respectively, let them be added 
to the equation just written down, and we have 

0 = ( 2 x , +  y l t a l - 3 a l P + 3 Q ) d x l ,  
+ ( 4 + 2 y l + * l + 3 @ l P + 3 Q ) d ~ l >  
+ (2x2+ + 2 + ~ - 3 % P + 3 Q ) ( f ~ a ,  
+ ( ~ 2 t + y 2 t * p + Q P y P + 3 Q ) ~ ~ ~ ~  
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Now according to the principles of the differential calculus 
the coefficients of ds,, dyl, ... dzi, dyi must be severally equal 
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to zero. Hence we are led to these equations: 

and so for the other triangles. Now by substituting the 
values of xl y l ,  x2y2,  &c. so expressed in the equations (4), we 
get two others from which P and Q can be eliminated. If 
me put 

then 
h P + 2 i Q = N ,  

2 k P +  hQ = N; 
and consequently, if further we put 4 i k - AB = U, 

which fully determine P and Q: and the values of x,yl z,, 

xr y2 z2, x, yi zi follow at once from equations (5). This com- 
pletely solves the question : the finally adopted values of the 
angles are, for instance in triangle 1 : 

We shall now ascertain how these adopted angles are 
individually affected by the actual errors of the observed 
angles. If we substitute in ( 5 )  the values of M and N, after 
replacing t co c, c2 ... c, by their equivalents in terms of the 
actual errors of observation from (1) and (3) we get 
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Among these quantities we shall require for the investiga- 
tion of probable errors the following relations which are 
easily verified : 

Z(E2  + F2 + G2)=  #dU, 
B(E'" PF4 + G2) = j k ,  
Z(EE'+FF+GQ3 =-4 U. 

The substitution of the last expressions for P and Q in the 
equations (7) leads to the following : 

where 

1 1  
t / = - -  

1 
+B(~131+2z<)y t ( p l l = B ( ~ l E 2 + 2 E [ ) . . . ,  

3 
1 1  t"=-- 1 + 7 (cl Fl + 2 F;), t;' = y (el P2 + 2 F,') . . . 

Put now S, S', 8" for the sum of the squares of the above 
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coefficients of the actual errors in the expression for the 
adopted angles, then after a lit.tle reduction, we get, on put- 
ting t  for the probable error of an observed angle, the follow- 
ing probable errors of the adopted angles-for 

E'... ~ C J S  = + t  J { 3 - x - 2 z  

B'... + t Z / ~ = + t z / { f  

2 2 a,... + t Z / ~ = + c  J { , - - - 3 9 1 .  3 i  
2 kU 

For the probable errors of the corrections q y l  3, to the 
observed angles we should obtain the following-for 

(9) 

As a numerical example of the application of these formulae 
we shall take a very large polygon which embraces the 
greater part of Ireland. The central point is Keeper (P) in 
the county of Tipperary ; then in succession Banrtregaum (PI) 
near Tralee ; Bencorr (P,) in Connemara ; Nepliin (P,) in 
Mayo; Cuilcagh (P,) near Enniskillen ; Kippure (P,) near 
Dublin; and Knockanaffrin (P,) in mraterford. I n  taking 
this piece of work as an example it is necessary to remark 
that the conditions are not such as are supposed in our pre- 
ceding investigations : tlie angles are not observed inde- 
pendently, and they are not of equal weight. The angles 
were observed ae explained a t  page 161, consequently the 
sum of the angles at P is necessarily 360": hence c,, = 0. 
Nevertheless, with this proviso t.he polygon will serve our 
purpose of illustration. The following table contains the 
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data for the solution; and from these we have to calculate the 
18 corrections to the observed angles :- 

O '  ' ' I  A,' = 58 46 5.46 
R,' = ga 16 a2 .p  el = -1.68 
C,' = 68 58 8 90 
Sum ...... 36.68 
Sph. excess 38.36 

A , '= Io~  34 5.26 
B,'= 54 38 27.77 c, = -3.76 
C;= 2 2  47 43.81 
Sum ... ...- 16.84 
Sph. oxcasa - 20.63 

A,' = 74 5 54.27 
B,' = 68 az 0.37 F, = + 1.81 
C,' = 37 32 47 29 
Sum ... ...-41,93 

' 
Sph. excens - 40. I 2 

A,' = 51 55 12.30 
R,' = 69 17 33.41 s, = -0.52 
C,' - 58 48 2.80 
Sum ...... -48.51 
611h excess=4g.o3 

A; = 29 40 4a.oa 
B,' - 81 34 a5.36 r, = + 7.16 
(',' - 68 44 21.28 
SIIIII ...... = 19.66 
Sph. excess= 22.50 

A,'.= 50 55 6.36 
B,'= 25 57 17.09 4 = - 2 5 1  
C,'= 103 7 5492 
Sum ...... =18,37 
Sph. exceaa = 20.88 

In the equations ( I ) ,  (2), (3), and (4) we must suppose the 
unit to be one second of angle. Suppose that the result of 
the calculation is that 

sill 3; sin 3;. .. ein B: 
log siu A,' sin A; sin A( = 7, ... 
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where 7 is a very small quantity, then 'I = log (1  + c sin I"), 

and E =  
'I 

mod. sin 1"' 
The calculation stands thus : 

log sin 3. log sin A'. 
9.8981401,4 9.9320049,5 
9.91 14466,6 9.9894667 
9.9682787,3 9-9830548,6 
9-9709966,3 9,8960582 
9.9952864 9.6947194,7 
9.641 1380 9.890001 2 

sum = 9.3852865,6 9.3853053,8 = sum ; 
1 = -.0000188,2 c = - 8".93 ; 

h = I: (c) = + 0.442, 

k = +B(a12+b,2+c12) = + 13.144, 
31 = 4 2 (6,) = + 0.167, 
N = c-4 Z (el el) = - 2.930, 
U = 24 k-h2 - - 315.273; 

The values of ;r, y, z, . . . m, y, z, immediately follow from 
equations (5), they are as follows: 

I f  now we apply these corrections to the observed angles, 
each triaugle will close correctly, and the reproduction of the 
side PP;by calculation through the angles of the polygon 
will stand thus : 

log sin b. log sin a. 
9-8981414,6 9.9320053,4 
9.9114487 9-9894661,7 
9.9682783 9.9830544 
9.9709969 9.8960580,8 
9.9952856,6 9.6947090,6 
9.641 1438,7 9.8900019 

sum = 9.3852949 9.3852949,5 = sum. 



CALCULATION OF TBIANQULATION. 225 

The probable errors of the adopted angles a, 16, & are for 
the 6rst triangle . 

+ 0".766 r, k0"-762 r, k 0"-746 r, - 
and similarly for the others. Here t is the probable error of 
an observecl angle expressed in seconds. 

Let the adjoining figure represent a chain of triangles, 
Fly F,, . . . 4 being the 
points in which perpen- 
diculars from the trigo- 
nometrical stations PI, 
P,, . . . meet the meridian 
through P: let the 
length of the side 

P , P , + 1 =  k,, 
and the angle the di- 
rection P,P,+, makes 
with the north meridian 

E K,.  Suppoee in the 
first place that each 
angle of esch triangle 
is equally well observed, 
the probable error of an 
observed angle being * t. 

Then the last side of 
the chain is k, = 

dnB,sinB, ... einBi 
mnd1sin L&... sind,' 
If this be calculated 

P 
by using the observed 
angles 8,: B,', . . . the Fig. 47. 

result k; will be 
sin B,' sin B,' . .. sin B,' 

k,' = 
'sin A; sin A,'. . . sin A,'* 



Using the ssme notation as before, and putting Fi-k{ = ki c, 

we have 
E =-alel+P1fi-qgeg +A&- .... 

But if we correct each observed angle in each triangle by 
applying to i t  with a negative sign the third part of the 
excess of the sum of the observed angles above the troth, 
then the corrected angles are-in the first triangle, 

= A1+te1-bfi-bs19 (10) 
Bl =Bl-bel+tf,-bglY 
QI = G-bei-bfi+Qgi,  

and so for the others. 
I f  we calculate k, with these corrected angles and put still 

Pi-k, = ck,, we have 

- E =  b s ~ + b f i J l + b g l ~ l + i e s a e + b A 6 e + b g s ~ e + . . . ,  
which expresses the error of the resulting length of <4+, 
in terms of the actual errors of the observed angles. The 
probable error of 1,' is thus 

The reciprocal of 9 (aa+ aP + P4) for any triangle or the 
reciprocal of the mean value of P C (aa + a@ + pa) for a chain of 
triangles is called by Struve the ' weight of continuation ' of 
the triangle or of the series. It is greatest when A and B 
are nearly right angles, but in this case the angle C is very 
small and the triangle maken little 'progress' in the chain. 
Hence the weight of a triangle M proportional to the progrees 
i t  makes multiplied by the weight of continuation. 

Consider now the error of the calculated direction K: of 
the last side k, of the chain. 

Between Ka, C,,,, and K,,, there existe the relation 

K" + &+I+ ca+1= r, 
whence i t  follows that 

El=" -Iq-K, 
5 2  = G-c,+ K, 
K3 = T -C,+C,-C3-K, 
K4 = C,-Ce+ C3-C4+ K, 

the law of which is obvioua Hence the azimuth of the last 
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side as obtained from the corrected angles is 
q-&+~s- . . .+K,  or u - ~ + % - G +  ...-Kj 

according ae i is even or odd. Thus the error of the calcu- 
lated direction of k, is, disregarding its sign, and considering 
K as free from error, 

i e ~ + i f i - $ g l - i e s - i f i + % g g + i e g . . .  , 
and the corresponding probable error 

Using the accent still to denote calculated quantities, the 
calculated value of PP,,, is 

kocoeK+k,'cosK,'+k,'cosK,'+k~cosK,'+ ... k,'cosKi, 
and in order to  determine the probable error of this result i t  
is necessary to express each term as a linear function of 
q fl gl, e2f2g2, ... and then to ascertain the sum of the 
quares of the coefficients of those symbols. 

I n  thus estimating the errors of the calculated length of 
the chain and of the azimuth of the last side, we have treated 
the triangles as plane triangles, a simplification which can 
lead to no incorrect result. 

4. 
Suppose that :both the sides ko and k, are messured lines, 

free from error, and that i t  is required to correct the observed 
angles of the intervening chain so as to bring them into 
harmony with these lengths. Then when we we the thus 
corwoted angles to calculate k, from k we amve a t  a true 
result: thus 

sin B, sin B2 . . . sin B, - sin g sin a, . . . sin a, - 
sin A, sin As . .. sin A, sin 9, sin g, . . . sin (d, 

or 

0 =-%(el +4+&(fi+n)-...-ar (ec+xi)+P,((f,+y,). 
Suppose that first ki is calculated by means of the observed 

angles A,', B,', 4, B,', ... , and Z, being the result, let 
Pi- k, = c k,, then 

c =-%el+&f,-%e~+P~Blfa-.. -aiei+&fi; 
Q 2 
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also using the same notation as before 

en+f,,+gn=en, ~ , + ~ , , + Z ~ = - Q , , ,  
and 

- E  = - - ~ ~ ~ + P ~ y ~ - ~ ~ ~ + I g ~ y ~ - . . . - a ~ ~ ~ + B ~ y ~ .  (12) 

Further, let us take the more general case in which the 
angles are not equally well observed, and let the weights of 
A,,', B,,' C,' be the reciprocals of w,,, w,,', w,,". Then the 
most probable values of xl y1 3,  z2 y2 z2 are those, which, sub- 
ject to the condition (1 2), render a minimum, 

To the differential of fi add the differential of the right 
hand member of (12) multiplied by 3Q; then make the oo- 
efficienta of dnl , dyl , h 2 ,  dy8, . . . severally zero. The first 
two give 

+ + "1+Yl+e, 
W l  wl" + 3P1Q = 0;  

whence we have 

the sum xl+yl+rl making up -a , .  Now if we substitute 
in (12) the values thus obtained of the 0's and y's the re- 
sulting equation will give Q in terms of known quantities, 
and thus all the required corrections to the angles follow 
from (13) and similar equations for each triangle. This 
completely solves the problem. Q being expressed in t e r n  
of r, el, f2, . . . these may be replaced by their equivalent 
expressions in terms of the 3 i actual errors of observed aagles, 
and thus, finally, the adopted angles and the length and 
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direction of any side may be e x p r d  in terms of the 3i 
errors. 

To avoid complexity, suppose the weights of all the ob- 
~ ~ e d  angles equal, thus 

~1 =-b €1+alQ, o2 = -) c2+a2Q ... ,- 
Y I =  -b%+blQ, y2 =-bc2+b2Q ... , 
21 = - b % +  c1&, z2 = -be2+c2Q ... ; 

substituting in (1 2) and putting B (aa+ b2 + 9). = 6 k as at  
page 220, we have 

-6kQ = alel+4fi+clgl+ase2+~,f,+e,ga + ... . 
Thus we find for the actual errors of the adopted angles in 

the first triangle the expressions 

and by baking the sum of the squares of the d c i e n t a  of 
e,f,fi, b. we get for the probable errors of the adopted 
q l e u  : 

2 as 
Probable error of 8.. . . k r J (5 - --'), 

6k 

The error of the direction of the side k, (that of the first 
side being free from error) depends on - &, + %-%LC. : the 
expreseion for the error is 

~l+g,-~,-g,+~,+g*-~,+. .. ; 
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and if we add the sum of the squares of the coefficients as 
before, we find for the probable error of the direction in 
question, 

Z i  2 
kt J ( s - sk~C3s  

where 
2kC= q-c,+c,-c, ... . 

The probable error t of an observed angle must depend not 
only on the excellence of the instrument employed, the ex- 
pertness of the observer, and the number of observations 
taken ; but also on the care and skill with which the opera- 
tions g e n e d y  are conducted. In  as h r  as i t  depends on 
errors of bisection, of reading the circle, and of graduation, a 
value of t may be obtained from the intarnal evidence of the 
observations themselves a t  any station by comparing in- 
dividual measures of an angle with their mean. But the 
observed angles are affected with other errors which are only 
brought out in combining the observations made at  different 
etations. For instance, if there be any residual error of 
centering the instrument over the station-mark, or if a signal 
observed be not truly centred on the station-mark, a constant 
error will result. I n  some instancee local configuration of 
the surface may give rise to a lateral refraction, doubtless 
very small in amount, but persistent. Again a signal in the 
direction of east or west is liable to be differently illuminated 
on the north side and on the south KJ as to present a phase : 
any signal which is habitually seen in some peculiar light 
may present a phase. 

A more trustworthy method therefore than the evidence 
of the observations themselves is presented by the errors in 
the sums of the observed angles of triangles. I n  the 107 
triangles between Dunkirk and Formentera the mean square 
of error of a triangle is 4.161, hence the mean square of error 
of an observed angle is one third of this or 1.387 : the proba- 
ble error of an observed angle therefore in this work is 

f .6745J1.387= f 0".794. 
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In Colonel Everest's chain of triangles betweem fbs Ddtm 

~ Dnn.and~b. las~86Lri . IPgieermrs  give c = +0".517; 
and Tor his 72 triangles between the Beder base and the 
Seronj base r = k 0''.370. I n  the Russian arc, the probable 
error of an observed angle in the Baltic provinces ie 

t = k 0"-387 ; 
in Bessarabia t = + ON.57 3 ; in Finland t = $ O"48 9 ; in 
Lapland r = + 0".843, while in the 12 extreme northern 
hiangles t = k 1".466. 

I 8. 
The chain of triangles joining Dunkirk and Fomentera is a 

simple chain such m we have been considering. The same 
may be mid of the greater part of the Russian chain, though 
in the portion of the work north 
of Tornea m far as Fuglenaes the 
work is strengthened by the ob- 
servation of a greater number of 
pointe a t  each station. The ac- 
company ing diagram shows a por- 
tion of the meridional chain of 
Madrid starting from the base of 
Madridejoe. I t  is clear that such 
chains cannot be dealt with in 
the same manner as the simple 
chain of triangles we have been 
considering, and this remark ap- 
plies still more forcibly to triangu- 
lations like that of Great Britain 
and Ireland where the lines of 
observation are interlaced in every 

q\ 
possible manner. I 

The equations of condition of 
a triangulation are those which Fig. 48. 

exist between the supernumerary 
observed quantities and their calculated values : that is to my, 
&r there are just sufficient observations to fix all the points, 
then any angle subsequently observed can be compared with 
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its calculated value. If a triangulation consist of n + 2 poi&, 
two of which are the extremities of a base line, then the re- 
maining n points will require 2 n  observed anglee for their 
fixation, so that if nc be the number of observed angles there 
will be m- 2 n equations of condition. The manner of ob- 
taining these is as follows. Suppose a number of points A, B, 
C, .. . already b e d ,  and that a new point P is observed from 
and observes beck m of these points, then there will be formed 
m- 1  triangles, in each of which the sum of the observed 
angles must be equal to 180' plus the spherical excess ; this 
gives at  once m -  1 equations of condit.ion. The m - 2  dis- 
tances will each afford an equation of the form called a 
side equation, viz. : 

not however limited to three fictors. Should P obeerve and 
be observed from only two pointa then there will be but one 
equation of condition ; when rn is not less than 2 every other 
bearing not reciprocal whether from P to the fixed points or 
from the fixed points to P will give a side equntion. When 
independent angles are obaerved another species of equation 
enters arising from the consideration that at every point 
where all the angles round the horizon have been observed, 
their sum must = 360'. I n  what follows this cam is not 
supposed. 

If then there be M observed bearings at  N stations them 
will be M-N angles for fixing N - 2  points, which require 
only 2 N - 4  angles, so that the number of equations of con- 
dition is M - 3 N +  4. If further there be P points at which 
there are no angles observed the number of equations of 
condition will be M- 3  N- 2 P+ 4, where N is the number of 
observing stations To these must be added equations which 
may arise from there being more than one measured base; 
thus n bases would give rise to n- 1 side equations. 

The side equations take the foam 

sin (B,'+yl) sin (B,'+y,) sin (B,'+y,) . . . 1=, 
sm (A,' + 2,) sin (4' + rc,) sin (A: +a3) . . . (14) 

where slyl, re, y,, . . . are corrections to the observed angles 
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d,'B,', d,'B,', . . . . This may be written 
sin8,'sinda ... 

-x1cotA,'+y,cot Bl-ffi2cotA2+ ... =-1 + sinB;sinB ,'... 

I Let q y,, . . . be expressed in eeconds, and take the logarithm 
of (1 4) ; then if we put 

I mod. sin 1" cot A: = a,, mod. sin 1"cot B,' = b,, 
and so on, me shall have 
O =  Z(logsinB'-logsin6)-alxl+blyl-a,x2+b2y ,.... (15) 

Here a, b,, ... are the differences of the logarithmic sines for 
one second. 

Thus we see how to obtain in any given triangulation all 
the necessary conditious that exist among the observed angles 
and to express them in the form of linear equations among 
the corrections to be applied to these angles. The correc- 
tions are as yet indeterminate; but according to the theory 
of probabilities the most probable values are those that 
render a minimum the sum of the squares of all the errors 
of observation. 

Consider first the anglee observed at  one station only. 
Selecting one signel, R say, from amongst those observed, as 
that to which the direction of all the others are to be referred ; 
let the directions of the other signals taken in azimuthal 
order make with the direction of R the angles A, By C, .. . , 
these being the most probable values to be determined. Let 
the first arc give t.he readings %, %', m:, m y ,  ..., m, cor- 
responding to the arbitrary reading of R, of which let xl be 
the true or most probable value : then the first, second, and 
third arcs will give the equations 

.and so on. These equations at  least mould hold good were 
the observations free from error; as i t  is, the left hand 
members are the errors of observation, the sum of the squares 
of which must be made a minimum in order to obtain the 
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Iboet probable values of A, B, C, ... and of the arbitrary dis- 
tances xl,xa, %, ..:d t b ~ d A h d h  &be+ of 
reference. I n  order to make the result general, multiply 
these equations by multipliers 

each of these t6 be unity when there is an observation, or 
zero when the corresponding obeervation is wanting. Then 
the sum of the squares of all the errors of observation a t  this 
station is 

The differential coefficjents of this sum with respect to 
xl, x2, x3 ... A, B, C, ... being severally equated to zero, we 
have these equations : 

substitute in the second set the values of q, xe, . . . given by 
the first, and the result will be s series of equations which 
may be written thus 

(aa)A+(ab) B+(ac)C+ ... = (an), (16) 
(ab)A+(Ib) B+(bc)C+ ... = (bn), 
(a c)A+(bc) B+(cc)C+ ... = (cn), 

8Gc. 

These equations determine A, B, C, ... . That is to say, they 
determine certain values which are the most probable with 
reference to the observations at  that station only. 

But the condition to be satisfied is that the sum of the 
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squares of the errors of observation a t  all the stations is to 
be a minimum. Let this sum be expresd  by 251 = 

fi(~-~~)~+~'(~'-~~-8)8+p;I(~"-2~-B) 2 . . . ,  ( 1 7 )  
+po ( m 2 - x 2 ) P + ~ ;  (%'-xs-AY tp2" (mn"-x2-B)4.. . , 
+p3 (%-as)8 + p i  (mi-x3-A)4+p/ ( ~ / - X ~ - B ) ~ .  . ., 

h . 9  

which is to include all the stations. Suppose there are i 
equations of condition in the triangulation: theae will be 
expressed thua I 

0 = A + q d + B l B + y I C +  ... , (18) 
0 =f ,+a ,A+B2B+yaC+. . .  , 
0 = f , + o , A + P s B + y s C + . . .  , 

&c. 
Multiply these equations by multipliers I,, I,, Is ... 4 of 

which the values are to be determined. Then the condition 
of minimum requires the following :- 

dSZ _-  dSZ - = 0, 
dQ -- 

dg, - O, dth - 0 ... ; 
h, 

To abbreviate, use this notation 

[I] = %Il+  %Is+ a,&+ *-. , 
~ 2 1  = P ~ I , + ~ , ~ , + ~ I ~ + . . .  , 
131 =y1I,+y2Is+ Y S I ~ + . . . ,  

h., 
a symbol of the form [n] corresponding to each observed 
angle. With this substitution the preceding equations 
become 

~ l ' p r , + ~ l ' ? ' +  ... = ( p l + p  ,'...) x1+p,'A+p,"B+ . - a  

p 2 m 4 t p ~ m ~ +  ... = (p ,+p/  ...) n , + p / A + p J B +  ... , 
p3m,+pS'm3'+... = ( p s + p  ,'...)z3+p,'A+ p / B +  ... 

t c .  ; 
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[I] +A' m[ +p: m i  + . . . = ( p i  +p: . . .) A +A' 0, tpi  2,. . , 
[2] +pl" m," +p:m," + . . . = (p," +p,". . .) B +p,"xl +p,"a;. . , 
[3] +pll"m,"' +pil'rd/ + . . . = (p,"' +pa1'. . .)C+pl)lr;tl +J+"'%. ., 

am. 

Substitute now the values of the x's from the first equa- 
tions in the second eqnations, and the result will be 

corresponding with equations (1 6) : (aa), (a b), (an), . .. being 
the same in both. But the A, B, C, . . . in (16) am not the 
same as the A, B, C, ... in (20) : the former are only ap- 
proximate values, let them be denoted by A,, B,, C,, . . . , 
and let 

A = d,+(l), B = Bl+(2), C = C1+(3), 

and so on. Substitute these values in (20) and we have 

Each station mill present a group of equations of this form 
in number less by unity than the number of signals tbere 
observed. These equations are to be solved and brought into 
the form 

this notation for the coefficients being adopted for the sake of 
symmetry. 

Substitute in these last the equivalents of [I], [z], [3], ... 
from (19), and we get (I), (2), (3), ... expressed in terms of 
the multipliers I,, I,, I,, ... . 

The equations of condition are to be formed with the angles 
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differences between the individual results in the vertical 
columns and their mean. I n  a column to the right of this 

portion of the table are placed the means of these small 
quantities in the corresponding horizontal lines. I n  the 
third part of the table these last small quantities, one cor- 
responding to each arc, are applied with contrary s i p s  to the 
corresponding readings in the first part of the table. The 

. means of the vertical columns as they now stand are taken 
as the true or most probable brings. 

The weights of these values of the bearings are formed by 
taking the differences between the individual results in  each 
vertical column and their mean and gumming the squares of 
these differences : thus, see page 56, 

na 
w = --- 

2 2 (e2) ' 
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n being the number of observations of the bearing in 
question. 

The final weights so obtained would have been greatly 
increased if i t  had been allowable to reject discordant observa- 
tions, but this has never been done unless the observer has 
made a remark that such an observation ought to be rejected. 
Obeervations taken under favourable circumatancea are doubt- 
less more valuable than observations under less favourable 
circumstances; but how to a~s ign  their relative numerical 
value is a question admitting of no general solution. 'It 

1 appesrs that the longer time one is compelled to bestow upon 
observations under less favourable circumstances, in a great 
measure compensates external disadvantage, and that causes 
of e m r  of observation of which the observer himself has not 
been conscious, oflen influence him no less than those which 
obtrude themselves upon him' (Bessel, Gradmesung ifi Ost- 
petlasen). It has indeed been often noticed that an observa- 
tion to which the observer has attached a remark to the effect 
that the b i d i o n  was unsetisfactory, or that the light was 
bad, or any other expression of doubt, haa been found to agree 
with singular precision with the general mean. 

Thus then are obtained at each station the bearings of all 
the other stations with their respective weights. The problem 
then takes this shape :-to determine a system of corrections 
to these bearings such that the sum of their squares, each 
multiplied by the corresponding weight, shall be a minimum : 
this is different from Bessel's solution, where the actual sum 
of the squares of all the aomotioes at  all the stations was 
made a minimum. The modified problem, without sacrificing 
much, is very much more practicable. 

Let the observed bearings be numbered consecutively, and 
let LU,, be the correction to the na bearing, of which let the 
weight be w,,. Then we have 
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being the equations of condition of the system, and a function 
of the corrections which is to be made a minimum. 

Differentiate the equations of condition after multiplying 
them by I,, I, I,, . . ., and adding to - d n ,  make the ooe5cients 
of a?$, h2, dx, , . . . in the sum severally equal to zero. Thus 

S~lbstitute these in the equations of condition, and the result is 

Here we have a system of numerical equatione equal in 
number to the equations of condition, and by their solution 
are obtained numerical values of I,, I,, I,, . . . . These substituted 
in (25) give directly the required values of xl x2 x,, . . . . After 
the application of these correction0 to the observed bearings, 
all the geometrical requirements will be fulfilled, and that 
with the least possible alteration, in the aggregate, of the 
original observations. 

The different steps of the process are then as follows :-First : 

the obtaining of the ,pmetrical equations of condition sup- 
plied by the connection of the triangulation. Second: the 
substitution in these equations of the obaerved bearings, each 
with its unknown correction appended. Third : the equations 
of condition being written out in their algebraic form (24), 
and unknown multipliers assumed, the equations (25) are 
formed. Fourth : from these equations the corrections must 
be obtained in terms of I,, I,, I,, . . . and substituted in the 
equations of condition. Fifth : these equations must now be 
solved and numerical values will result for I,, I,, I,, ... . Sixth : 
the substitution of the values of these multipliers in the eqna- 
tiona (25) whereby the corrections xl xB xs, . . . become known. 
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Seventh : the verificntion of the work by the substitution of 
the corrections in the equations of condition, and by the work- 
ing out of the whole triangulation. The following test may 
also be applied. Supposing xl xg xu . . . to be the corrections 
to the bearings at any one station, ol w8 w3, ... the correspond- 
ing weights, then i t  is easy to show that 

w1xl+w2x2+w,T3 ... = 0. 

If e, be the actual error of the nth bearing, the error of the 
adopted value of that bearing is e,-t 8,. Now we may express 
the x's in terms of all the e's: for by inversion of the equa- 
tions (26) the Ps may be expi.esscd in brms of the c's, and 
these last are connected with the actual errors by the equa- 
tions 

-el = alel+a,e,+a,es ... , 
-c, = 61e1+62e2+b3e ,... , 
- cs = cI el + c2 e2 + c, e, . . . , 

&c. 
Let the multipliers I, I, I,, ... by means of (26) be expressed 
in terms of el c2 c,, . . . thus 

4 = (aa)cl+(aB)e2+(ay)e3 ... , (27) 
= (a@) ~ I + ( B @ ) E ~ + ( B Y ~ ~ ,  

I, = ( ay ) r l+ (Py) ' z+ (~~) ' s  9 

&c. ; 

and make use of symbols Al 4 A, .. . such that 

Al = (aa)a l+(a@)bl+(ay)c l . . . ,  (28) 
Ag = (UP) a1 + (BP) 61 + (BY) ci 
A3 = ( a Y ) a l + ( k J ~ ) ~ l + ( Y ~ ) c l  ... 2 

kc. 
Then 

W , T ~  = h l~1+A2~2+A3~3 . . .  I - ( A ~ ~ ~ + A ~ ~ ~ + A ~ ~ ~  ...) el, 
-(Ala,+h,b,+A,c2 ...)e,, 
'(hi 4 + A, ~ 3 . .  .) e3, 

&c. 
Similarly x2 x,, . .. may be expressed in terms of el e, e3, . . . 

Consider now the probable error of el+@,. If we write 

Wl"1 =Plel+P,e,+P,ea a * . ,  

then w, (xl + el) = (wl ++pl) el +p2 e, +p3 es + . . . . 
Suppose that r is the probable error of an observed bearing to 

a 
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which appertains the weight unity, then the probable error 
corresponding to a weight ' w  will be c : Jw. Therefore the 
probable error of w, (a, + el )  is 

Now 

which we shall arrange thus 

These we have to add to similar expressions in a. b2 c, . . . 
thus 

p2 a  a ah a  c s (;I = A ~ A ~  (;) + 4% (;I + Al& (;) --• 9 (30) 

a b b  b b c + A1A*(;) + A 2 A 2 ( % )  + A2)5(; )  . - - 9  

b  c c c + A1A3 (Z)  + A2As (;) + As As (;) - - a  , 
kc. 

But the mutual relations of the equations (26) (27) give the 
following transformation of ( 2 8 ) ,  

aa a b  a  c 
. 1 = ( 3 . ~ 1 + ( ~ ) ~ 2 +  ( w ) ~ , . . . ,  

b a bb  b c 
81 = (;) A* + (;) % + (;) As - - -  , 

c b  c c 
c1 = ( ; ) A l +  (;) % + (;)&... , 

t c .  
Thus by addition of the vertical columns of (30) 
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I which substituted in (29) that expression becomes 

+ t (w, +PI)), 
and restoring the value of p,, me have for the error 
of the corrected bearing, corresponding to xl, 

The probable error of the distance between any two ststions 
in the triangulation, or of the angle eubtended at  any stat,ion 
by any two other etations, may also be expressed; but for 
this me must refer to Gauss: S u f y l l ~ t u n r  ti~em'm combirtc- 
tionis obeervntimum m r w i b m  miuimM obnoiuia?, Gottingen, 1826 ; 
or to the investigations of General Walker, in the second 
volume of the Account of the Great lbigonometrical Survey o f  
Id ia ,  where the subject is very elaborately worked out. 

The minimum value of 2 1 = 10,iul2 + zo2iu: + w3 x ~ ~ .  . . is 
easily shown to be 

2 9  = J l q + I a € 2 + I s ~ s + . . .  . 
In  order to avoid the solution of the equations containing 

920 unknown quantities in the triangulation of Great Britain 
and Ireland, the network covering the kingdom was divided 
into a number of blocks, each presenting a not unmanageable 
number of equations of condition. One of these being corrected 
or computed independently of the others, the corrections so 
obtained mere substituted (as far as they entered) in the equa- 
tions of condition of the next block, and the sum of the squares 
of the remaining equations in that figure made a minimum. The 
corrections thus obtained for the second block were substituted 
in the third and so on. Four of the blocks are independent 
commencements, having no corrections from adjaeent figures 
carried into them. The number of blocks is 21 : in 9 of them 
t,he number of equations of condition is not less than 5 0 :  
and in one case the number is 77. These calculationeall 
in duplicate-were completed in two years and a half-an 
average of eight computers being employed l. 

The equations of conditian that would have been required 

* In connection with ao great a work successfully accomplished, it is but 
right to remark how nluch it was facilihted by the energy and talents of the 
chief computer Mr. James O'Farrell. 

a 2 
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to make the triangulation conform to the measured lengths of 
the base lines were not introduced, as they would have very 
greatly increased the labour, already sufficiently serious. 

9. 
When once the corrections to the several observed bearings 

have been found as described above, the calculation of the 
distances by Legendre's Theorem is su5ciently simple and 
straightforward. But if the equations of condition binding 
the triangulation to a n  exact reproduction of the lengths of 
the messured base lines have been omitted, me have still to 
consider what shall be taken as the absolute length of any one 
side in the triangulation. Let x be the required length of 
any one side ; and let a x, g2 x, e3 x,  .. . be the lengths of the 
base lines as inferred from the ratios e l f 2  q . . . given by the 
triangulation of the specified side to those base lines. Then 
if Bl B, B3 . . . be the measured lengths of the base lines, 
w, w2 w3 . . . the col~esponding weights, 0 must be taken so as 
to render a minimum the expression 

wl (c, x - BJ8 + w2 (c2 x -BJ2 + ws (gs - BJ2 + . . . , 
that is to say 

x = ~ 1 0 ,  B,+w'2c2 B2+ w S ~ , ~ S + . . . .  
~ * e ~ ~ + w ~ d 2 ~ ~ + w ~ e : + . . .  

I n  this kingdom six base lines have been measured, the earlier 
ones with steel chains, the two most recent with Colby's com- 
pensafion apparatus. The absolute length of any side in the 
triangulation is made to depend entirely on the two last. 
The following table contains the measured lengths of the 
bases, and their lengths in the corrected triangulation- 
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The only serious difference here shown is in the case of the 
base at  Rhuddlan, and this is owing in great measure ta the 
Lad connection of the line with the adjacent triangulation. 

I 10. 
We shall now give a simple example of the calculation of 

corrections to observed bearings 
in a small piece of the triangu- 
lation of this coontry. The 
point8 are South Berule, B, in 
the Isle of Man; Merrick, M, 
in Kircudbrightshire ; Slieve 
Donard D, in the County Down, 
Ireland ; Snowdon, S, in the 
North of Wales; and Sca Fell, 
F, in Cumberland. The line DP 
in the diagram being broken to- 
wards F, intimates that Sca Fell 
did not observe Slieve Donald. Re. 49. 

Now in the triangle BXD, 
the three angles being observed, we have first 

BMD+MDB+DBM= 180°+q, 
where c, is the aphelia1 excess of the triangle. Secondly, 
the triangle BDS gives similarly 

BDS+DSB+SBD = 180°+t,. 
Thirdly, the triangle aSF gives 

BSF+SFB+PBS= 180°+c,. 
Now the points dfBJ1 being fixed the observation of the 

angles BMF, BFM, which are known, brings in two equations 
of condition ; one is 

BgF+ MFB+ FBM = 18O0+c,, 
and the second, the ' side equation ' 

sin BSF. sin BDS . sin BMD . sin BFM = I .  
sin BM . sin RSD . sin BUdl . sin BNF 

Finally, the observation D F  brings in the side equation 
sin FMD . sin FBM. sin FDB - 1. 
sin EBM . sin E.XB . sin FBD - 
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I n  order to express these equations in numerical form we 
give in the follotving table the results of the observations a t  the  
different stations on which the calculation is to be lased. 
The last column but one gives the reciprocal of the weight of 
each observed bearing: and the last column the number of 
observations in each case. For r,, q, z3, ... , \ve write, as is 
usual (I),  (2), (3), ... . 

I OBBEBVINO 
, ~ T A T I O N S .  
I 

Merrick . .. 

Slieve Douard 

South Berule 

I 
I 

Sca Fell . .. 

1 Snowdon ... 

! 
1. 

South Berule 
Slieve Donard 
Sca Fell ... 
Memch . . . 
Sca Fell .. . 
South Berule 
Snowdo~l ... 

SLieve Donard 
Memck ... 
ScaFell ... 
Snowdon ... 

Snowdon ... 
South Berule 
Memck .. . 

Slieve Do& 
Soutli Berule 
Sca Fell .. . 

The formation of the four angle equations will then stand as 
follows, 

] - 

0.11 

0.19 

0.13 

098 
0.46 
0.37 
0.12 

0.61 
0.81 

0.50 

0.62 

3.93 

0.98 

1.88 

2.17 

10.10 

1.35 

south Bernle . . . 9;4846:65 - (8) + (9) 
Slieve Donard .. . 51 11 34.38-(4) + (6) 
Merrick ... 35 5 3.36- (1)+(2)  

180 0 23-79 
a, = 22.922 

... 0 = + 0 .868 - ( I )  t (2)-(4) (6) 

- (8) + ($1)- 

No. OF 
OMER- 

VATIONS. 
-- 

35 
14 

3' 

8 

13 
19 
a 1  

14 
10 

17 
ao 

3 
6 
7 

4 
4 
3 
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South Berule ... 11; l i 4 5 : i s  +(8)-(11) 
Slieve Donard .. . 42 45 22.55-(6)+ (7) 
Snowdon ... 26 2 17.41-(15)+(16) 

180 025.15 
c2 = 24.433 

... 0 =+ 0.717-(6)+(7)+(8)-(11) 

- ( Is )  +(16)- 

South Berule ... 91'5; i['86-(10) + (1 1) 
Snowdon ... 37 46 31.07-(16)+(17) 
sca Fell ... 50 17 5.03-(12)+(13) 

180 0 37.96 
c3 = 32.258 

.'. 0 = + 5.702-(10)+(11)-(12)+(13) 
-(16)+(17). 

South Berule .. . 63' (26y90-(9)+(10) 
Sea Fell ... 6 2 5 5  5.00-(13)+(14) 
Merrick ... 53 58 51.13+(1)-(3) 

180 0 23.03 

I n  the calculation of the side equations, one third of the 
spherical excess has been ~ubtracted from the observed angles 
in the different triangles : this is not necessary, hut i t  is 
generally convenient to do so. Using eight figures of 
logarithms, and understanding that (I), (2) . . . are expressed 
in seconds the calculation stands thus, 

logsin B S F  ... 9.7871239,0+27,17 {-(16)+ (IT)], 

,, B D  S . . .  9.8317751,2+22,77 { -  (6) + (7) 1, 
,, BJID ... 9 -7594791 ,7+29 ,98 ( - ( 1 )+ (2 ) ) ,  

,, BFM ... 9.9495547,9 + 10,77 {-(13)+(14)}, 
logcosec B F S  ... 0.1139629,9-17,49 {-(12)+(13)}, 

,, B S D  ... 0.3576004,5-43,lO {-(15)+(16)), 

,, BDJf ... 0.1083304,9-16,93 { -  (4) + (6)}, 
,, BMF ... O*O921606,2-15,31 (+  (1) - (3) ), 

Sum -124,7+&c.; 
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log sin P j f B  ... 9.9999417,3 + 0,34 { + ( 2 ) -  ( 3 )  ), 
,, FBM ... 9.9502860,1+ 10,68 ( - ( 9 ) + ( 1 0 ) } ,  

,, F D B  ... 9.3455070,3+ 92,67 1,-(5) i ( 6 )  ), 
log cosec F D M . .  . 0.2069267,5 - 26,58 { - (4 )+ ( 5 )  1 ,  

,, ) 'JIB ... 0 .0821606 ,2 -15 ,31{+ (1 ) - (3 ) } ,  
,, F B D  ... 0.4052080,5-49,21 { + ( 8 ) - ( l o ) ) ,  

Sum 301,9+&c. 

Thus the fifth and sixth equations are 

Now multiply these six equations by I,, I, . . . I,, and form the 
equations ( 2 5 )  page 240 ; they will stand thus, 

( 1 )  = -Il  + 1,-45-29 1,- 15.31 I,, 

( 2 )  = +I, + 29.98 I,+ 0.34 T,, 

6% (3> = -I4+ 15.31 I,+ 14.97 I,, 

,& (4.) =-I, +16.9316+ 26.5816, 
1 PI = - 119.25 I,, 
,& ( 6 )  = +IL-1,-39.70 I,+ 92.67 I,, 

& ( 7 )  = +I, + 22.77 I,, 
1 
6 ( 8 )  =-II+I~ - 49.21 16, 
1. 
- ( 9 )  = +r1-r4 0.02 

- l 0 ~ 6 8 I 6 ,  

& ( l o )  = -I3+J4 + 59.8916, 

& ( 1  1 )  =-12+I3 ,  

( 1 2 )  = - + 17.49 1,) 

As ( 1 3 )  = +I3-  1,-28.26 I,, 

( 1 4 )  = +I,+ 10.77 I,, 

, ( 1 5 )  - 1 ,  +43.1015,  
1 i,, ( 1 6 )  = + I,-1,- 70.27 I,, 

& ( l 7 )  = +I3+ 27.1715. 
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The next step is the multiplication of these out, so as to 
express (I), (2), (3) ... in terms of I,, 12, I, ... directly. This 
done and the resulting (I) ,  (2), (3) ... subfltituted in the six 
equations of condition, the following system of equations is 
obtained : 

From these equations the numerical values of I,, I,, I, . . . have 
to be eliminated, and this is the most troublesome part of the 
whole operation. The logarithmic values of the multipliers 
are found to be these, 

log rl = 9.2707823, IogI, = 9.6787289, 
log12 = 9.9693@96 n,  log I, = 6.7453816 n, 
log 1, = 9.9750836 n, . log I, = 8.5005755 n ; 

the n following a logarithm signifying that the natural 
number is to be taken negatively. It is a simple matter now 
to get the values of (I), (2), (3) . . . ; they will be found to be 
as follows, 

These, finally, are the required corrections to the observed 
bearings ; and the subsequent calculation of the triangles 
presents no discrepancies. 

The side Slieve Donard t.o Sca Fell is the longest in the 
British triangulation, being upwards of 11 1 milcs in length. 
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It may be well here to exemplify the calc~~lation of co- 
ordinates by the formulae of pages 49, 50. Starting from D 
we shall calculate the coordinates of F and ill measured along 
and perpendicular to the meridian of D, which here corresponds 
to the P of fig. 12. I n  the first place the solution of the 
triangle DFJf is as shown in this tahle: the third column 
containing the seconds of the angles in the preceding column 
diminished each by $ c. 

At D we have given a,=7g0 5' 16"-000 being the known 
azimuth there of F: also D2C1.= a, is the first distance in the 
preceding table. Retaining the notation of the article referred 
to above, put further 

aI-$ t = a;, a'- 4 cl = a:, 
and lct t,he factor (2 f p  sin I")-' for the calculation of spherical 
excess be expressed by E. Then for the coordinates of Sca 
Fell, 

0 , a ,  logs logs 
a,' = 79 5 10 981 an 9.99207534 ain a, 9.99208 
a,"= gg 5 5.961 oos g.a7727150 colc a, 9.a7716 
6, = 587051.78 5.76867i15 8 '  1.53735 
X, = 111160.03 5.04594~65 E 0.37117 

YI ' 576435.19 5.76075049 el= 15~958 1.17776 

To proceed from F to M, me have q= 127" 26'44".041, being 
the supplement of the angle D F H :  also 

LOG ~ w s a  

9.99994'73 
9.79.307805 
9 89976146 

- + 6 

41.331 
16.025 

2.644 

STa~~ons. 

Mm+ck 
Donard 
Scrr Fell 

t' bring obtained by a preliminary calculation of x;. Tlien 

'::,"= 
0 , ,I 

89 3 54645 
38 a3 19.340 
52 33 15.959 

* = 39'944 

.,,, ,,. 

5.76867715 
5.56181347 
566849688 

D~erax'm. 
- 

R. 
58705a.78 
364597.31 
466119-08 
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for the coordinates of Merrick, 

0 * I ,  'v 1.p 
-%' = 48 aa 1cq40 dn 9.87358000  in a, 9.87359 n 

f *'-a,"= 48 a2 38.382 c a  9.82231330 a, 9.82237 
b = 364597.31 5.56181347 1.11361 

-y,' = aya516.91 5.43539347 E Q-37x17 
2; = 142173.59 5.38412677 r,= - 15".51 5 1.19075 

f r'y, sin I"= 91.70 1.96237 2; 5.38413 
Y, = 303918.27 YI 5.76075 
2, = 353425.31 ) e'= 3a1'.813 1.51605 

These values of 2, y, may be checked by proceeding direct from 
U to M : the calculation gives 

The diagram, page 252, shows the triangulation of the 
northern part of this kingdom, including Scotland, portions 
of England and of Ireland, and the Shetland Islands. The 
etation Saxaford, a t  the northern extremity, is one of a close 
group of three stations, a t  each of which the latitude was 
observed as the extremity of the British arc of meridian. The 
straight dotted line proceeding northwards from the station 
Easington, on the north coast of Yorkshire, and passing a 
little to the left of Saxaford, is the meridian of Easington : 
S is the point in which a perpendicular fiom Saxaford meets 
the meridian line. 

The other dotted lines indicate the manner in which the 
distance, Easington to S, was calculated: the calculation was 
made as follows. Astronomical observations a t  Easington 
showed that the azimuth there of Cheviot was 38'48' 58".68 
to the west of north. On the meridian so defined take a point 
A, whose distance from Easington is equal to the distance 
Easington-Cheviot. Join the point A with Cheviot and 
Mount Bat,tocli, and it is evident, since all the angles and 
distances in  the triangulution are known, that we can deter- 
mine the distance of A from Mount Battocli, and also the 
angle a t  A between Mount Battock and the meridian. Next, 
take a point D in the same meridian whose distance from A is 
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eqnal to the side A-Mount Bat.tock. Join I) with Mount 
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Battock and Scarabin and take the point G, such that D G is 
equal to  the distance D to Scanbin. Join G with Scarabin, 
Fitty Hill, and Foula, and take H such that G H  is equal to 
the distance G to Foula. Join R with Foula, Yell, and 
Saxaford, and from the last point drop the perpendicular on 
the meridian, meeting i t  at 8. On computing the several 
portions of the line Easington to A, AD, DG, GH, HS, their 
sum was found to be 2288427.29 feet, and the length of the 
perpendicular from Saxnford to 8, 222.56 feet. The calculation 
was then repeated with an entirely different set of points with 
a resulting length of 2288427.38 feet, and for the perpendicular 
221.94. Thus the distance from Easington to Saxaford is 
known, and the angle 

Cheviot : Easington : Saxsford = 38' 49' 18".767. 

This example is given to show how the direct distances 
between remote points in the triangulation are obtained. In  
a similar manner mere calculated the following results: 

The distance, Greenwich-Feaghmain 
= 2350102.30 feet. 

The angle, Chingford : Greenwich : Feaghmain 
= 8i0 59' 1 i"s857. 

Feaghmain is the most westerly trigonometrical station in 
Ireland, in the Island of Valencia: and Chingford is a station 
due north of Greenwich. 

Also the following, Mount Kemmel being a station of the 
Belgian triangulation : 

The distance, Greenwich-Mount Kemmel 
= 694849.31 feet. 

The angle, Chingford : Greenwich : Mount Kemmel 
= 1 lo0 26' 7".398. 

The connection of the triangulation of this county with 
that of France and Belgilim was effected in 1861, in connection 
with M. Struve's proposed arc of longitude, extending from 
Feaghmain to Orsk, on the river Oural. The network con- 
necting the coast of Kent and Sussex with Mount Kemmel 
in Belgium, is shown in the diagram, Fig. 51. Fairlight, 
Paddleswortk, and St. Peter's are stations in the English 
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triangulation, the two sides meeting a t  Paddlesworth are 
given, and also the angle in which they intersect : in addit.ion 
to these a point, Coldham, was selected near ~olkestone, corn- 
manding an excellent view of the French coast, and also 
aeeing the stations a t  Fairlight and St. Peter's. 

Fig. 51. 

The necessary operations mere conducted by English o5cers 
acting in concert with officers selected on the part of France. 
The observations-made independently-were commenced in  
June 1861 and finished in the following January. The follom- 
ing comparison of certain triangle sides expressed in metres 
as obtained from the English triangulation, and as obtained 
by the Belgians from their base of Ostend, is satisfactory 
enough: the second column gives the approximate distance 
in miles. 
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The case in which the principal triangulation of a county 
consists-as in France, Spain, and India--of chains of triangles 

1 running north and south, 
crossed perpendicularly by 
chains running east and west, 
requires particular considera- 
tion. Consider the accom- 
panying figure, representing 
portions of two pairs of 
chains enclosing a four-sided 
space : and let it be given 
that in each of the 2 5  trj- QI QI 

angles of which the closed Fig. 51. 

chain is composed, the three angles are observed, and say, 
with uniform precision. Let P Q  be a base line, or at  any 
rate a line of a given length : then excluding P and Q, there 
are 23 points in the figure requiring 46 angles to fix them ; 
thus there must be 3 x 25-46= 29 equations of condition. 

I n  any spherical polygon of n sides and area E, 
the sum of the interior angles =(n- 2) r + E, 
the sum of the exterior angles= (n + 2) r- E, 

and if me apply these to the exterior and interior polygons of 
our figure, we see that, if for instance n', E' be the number of 
sides, and area of the former, (n' + n) a + E'- E must be equal 
to the sum of all the angles of the triangles, and this condition 
is secured by making the sum of the angles of each of the 
n' + n = 13 + 12 triangles, = r + the spherical excess. To these 
25 conditions must be added that (A) given by the sum of 
the angles of either of the polygons, and (B) the side equation 
ensuring the correct reproduction of the length of P Q after 
working through all the triangles. There still remain two 
equations to be foutld. 

The conditions ss yet taken into consideration ensure that 
if starting with the length P Q  we calculate through the 
successive triangles until P Q  is again arrived at, then the 
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computed P Q is true in length and true in direction : but we 
have not ensured that the computed P Q is actually coincident 
with the tme. Draw from P the arc of a great circle P U, 
making with P Q  such an angle as that i t  shall divide the 
interior polygon into somewhat equal portions. From 
Pi, P,, ... drop the perpendiculars P,pl, Pep,, ... upon PI/ 
and let Pp,=X,; P,p,= Y,: then, when, starting from P 
the calculation of these coordinates has been carried from point 
to point round the inner polygon until P is finally returned to, 
its X must be zero (C) and its Y must be also zero (D).  These 
are the two equations required. Let A', B', C be the observed 
angles of any triangle, e the error of their sum, and let the 
most probable angles bo be adopted be 

6 - 4 e + z J  X-be+y,  C-A e-x-y. 

These corrections at  once hlfil in the case of each triangle the 
condition of making the sum of the angles of that triangle 
true, and thus the number of equations of condition is reduced 
to four (A), (B),  (C), (D). And this number, viz. four, is the 
same for all simple closed chains, whatever be the number of 
triangles. The formation of the equations (A) and (B) in 
terms of all the a's and y's presenta no difficulty. For the 
othera; assuming, first the x's and y's zero, i t  is clear that 
using the angles A'- 4 e, B- A e, C- & e, each side and 
angle of the inner polygon has a definite numerical value 
which is to be calculated. Then by the formulm of spherical 
trigonometry, page 50, calculate the coordinates Xi YIJX, P, ,. . . 
until the initial point is returned to, when, instead of getting 
zero, we get certain numerical values (X) and (Y) for the 
coordinates of that point. 

But the symbols O, y, . . . introduce an increment to e&h 
side of the polygon and an increment to each angle: this 
increment there is no difficulty in expressing. For instance, 
if 1 80°+ a be one of the exteinal angles of the inner polygon, 
then d a  is of the form ~ ~ ~ ~ - o , - y , + y , + , ,  and using the 
method of page 39, dS will involve generally six of the 
symbols x, y with coefficients not unity. Then having 
written down the expressions for the succewive quantities 
do, dS, the formula (3) gives the total increments d(X) and 
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d (P) to be added to the values obtained for (X), (Y). Thus 
the equations (C) and (D) are 

(X)+d(X)=O, (Y)+d(Y)=o.  

Then we have to make a minimum the sum 

2 ((ite-~y+(ite-y)~+(ie+z+yyIY 

or, which is the same, Z (zs +y2 +(a + Y ) ~ )  is to be a mini- 
mum--subject to four conditional equations : 

Proceeding as in previoas cases, this resolves itself into the 
determination of four multipliers, by which finally the x's and 
yL are obtained. 

Had another side, aa HK, been a measured base this cir- 
cumstance would have introduced an additional equation of 
condition. 

The most elaborate calculations that have ever been under- 
taken for the reduction of triangulation by the method of 
least squares are those of the Indian Survey. The principal 
triangulation of India is formed of chains of triangles dis- 
posed as shown in the diagram, page 31. The axis of the 
system is the great arc of Colonel Everest, running from 
Cape Comorin to the Dehra Dun base in the Himalayas: 
the principal chains divide the triangulation into five geo- 
graphical sections, four of which may be roughly described as 
quadrilaterals, the fifth in the south being trilateral. At  
the corners of the quadrilaterals are the base lines which, 
with one exception, were measured with Colby's apparatus. 

As the extent of the operations quite precluded the idea of 
reducing the whole in one mass, as required by theoretical 
considerations, General Walker decided to treat separately the 
five sections specified above, reducing the figures in succession, 
upholding and maintaining the results determined for the one 
first reduced in the contiguous figures when they in turn 
were to be undertaken. This arrangement made it necessary 
to commence with that section of the work which was in all 

8 
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its parts of the highest accuracy: thia is the north-west 
quadrilateral a6 f i. In this section of the work there are 
128 single triangles and 1 10 polygons-including in that  
term quadrilaterals and complex figures-comprising a total 
number of 2418 observed angles. These polygons present in 
the aggregate 955 equations of condition, without consider- 
ing the closings of circuits. 

This being as a whole still unmanageable, i t  became neces- 
sary to obtain correctione to each separate figure, whether a 
simple triangle or a polygon, with regard only to the con- 
ditions presented by that figure itself. Thus, in the first . 
instance, all the angles received corrections without regard to 
the closings of circuits. 

For the purpose of the final adjustments of the circuits, the 
complex chains+omposed as they are of single triangles and 
polygonewere r e p l a d  by simple chains composed of these 
single triangles and a selection of continuous triangles from 
the polygons : the polygons having been made consietent, i t  
waa so far immaterial how these triangles were selected. 
Then the already partially corrected angles d, B, C of any 
triangle receive symbolical corrections a, y, and - (x + y), the 
sum of the squares of which multiplied by the respective 
weights is to be a minimum. The corrections x, y, . . . are con- 
nected by equations which ensure the closing of the chains 
and the correct reproduction of the meaeured base line lengths. 
An inspection of the diagram shows that in the north-west 
quadrilateral there are five circuits to close, and, according to 
what we have seen in the preceding pages, thie requires 
4 x 5 = 20 equations of condition. Besides these the four 
base lines give 4 - 1 = 3 additional equations. 

With respect to the reproduction, by the corrected triangu- 
lation, of the measured length of the bases, i t  is necessary to 
remark that since in this calculation the exact weight of 
every observed angle has been strictly considered and brought 
into play so as to influence duly the final results, so also 
should the probable errors or weights of the measured bases, 
which are not errorless any more than t.he observed angles. 

Account of the Operatitma of the Qrcat Trlponometrical Suraty of India. 
by Col. J.  T. Walker, C.B., R.E, F.R.S. ; vol. ii, pagee 30-32. 
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But General Walker has shown (vol. ii, page 265) that it is 
but reasonable, after considering all the facts of the case, to 
treat the base linea as errorless in comparison with the 
triangulation. 

Let the adjoining diagram represent a succession of sides 
in a closing chain of triangles. Each 
side and each angle has a definite nu- 9 

merical value as given by the already p' 
partially corrected triangles, and to this 
numerical value is to be attached in each 
case a symbolical increment which can 
be expressed in terms of x's and y's. i"7-7 d '  Now suppose, that starting from the 
point a with a definite latitude and a 
definite azimuth of one line there, the 
latitude and longitude of 6 is calculated 

Q. 

and also the back azimuth of a at  6. Let Fig. 53. 
this process be repeated from 6 to c, and 
so on, until p is reached. The result will be that we get the 
latitude and longitude of p and the azimuth of the line pq. 
Then again, if proceeding by b', d, ... we make corresponding 
calculations, we get a second set of values of latitude, longi- 
tude, and azimuth at  p ;  and the two sets must be equated 
respectively. Thus arise three equations : 

Lgt route. Right route. 
Latitude, @ ' + B ( a ' d + Y y ' ) = 9 + C ( a x + 6 ~ ) ;  

Longitude, Q' + ): (a; x' + 6,'y') = L! + B (a, x + 6, J) ; 
Azimuth, A' + B (a,' a' + 6,'~') = A + B (a, a + 6, y). 

The fourth equation, an ordinary side equation, establishes 
the equality in length of pp with p'¶'. 9'- @, an'- a, and 
A'-A are the circuit errors in latitude, longitude, and azi- 
muth, as shown by the partially corrected triangles. 

The manner in which the equations were formed is this. 
Take h t  the linear equations which secure the repro- 

duction of base line lengths (A,  B, C, B are the Sironj, 

Comprised in Col. Walker's formulre (12 I), vol. ii, page I 76. 
8 2 
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Dehm Dun, Chach, and Karachi bases) and also identity of 
side lengths at  the junction of 

c chains. The discrepancies, re- 

ferred to the seventh place of 

17 decimals in the logarithms, 
between the measured and com- 
puted bat~ lengths, or between 

D c d A 
Fig. 54. the lengths of aides a t  the 

junctions as computed by two 
different routes, stand thus : 

. . . . . . .  .I. Dehra and Sironj bases . .  A B  + 44, 0 ; 
. .  2. Triangle side a t  a . . . . .  Ba-Ad, d a  + 68, 2 ;  

. . . . . . .  3. Dehraand Chach bases . .  BC + 71, 9 ;  

. . . . . . .  4. Sironj and Karachi bases . AD - 79, 6 ; 

. . . . . . .  5. Karachi and Chach bases . DC + 163, 8 ; 
. 6. Side at  b .  . . . . . . . . .  da, ad-de, cb -124, 6 ;  

7. Sideat c . . . . . . . . . .  Ab, bc-h3 f c  . +150, 9 ;  
8. Sideat C . . . . . . . . .  fc ,cC-fg ,gC.  - 5, 3. 

Next follow the discrepancies of latitude, longitude, m d  
azimuth at a, b, g, c, C: 

- n-ci8 A-A' 
#I I# It 

... a ... AB, Ba-Ad, dra +0.39 +0.17 +5.91 ; 
b...dn,ab-de,eb ...... -0.39 +0.21 +1.55; 
9 ... eR, Ag-eD, Dg ... + 0.39 + 0.29 -3.25 ; 
E ... A&, bc-Af, f c... ... + 0.04 -0.29 -4.23 ; . 
C... ft, cC-fg,gC ... -0.00 -0.29 -3.00. 

These numbers supply the absolute terms of the 23 equa- 
tions of condition. After the formation of these equations the 
next step is to form the equations for the 23 multipliers, and 
solve them numerically. 

The values of the corrections, riz. the at's and y's resulting 
from this voluminous calculation, are remarkably small. The 
total number is 1650 ; of which 1511 are less than a tenth of 
a second, 116 are between 0".1 and 0".2, 20 are between 0".2 
and 0".3, and 2 between 0".3 and 0".4 ; 1 only amounta to 
0".46. 

This is the merest sketch of the elaborate system of colcu- 
lation followed in the reduction of the Indian triangulation ; 



CALCULATION OF TRIANGULATION. 261 

its brevity might convey the impression that the matter is 
simple; a reference however to General Walker's second 
volume will dispel such impremion. 

We have referred to the reduction of the north-west 
quadrilateral only, but similar methods are followed in the 
other sections of the work. 

I n  the reduction by least squares of the triangulation of 
Spain1, i t  has been found necessary in order to solve the 
equations of condition-which are more than seven hundred 
in number-to divide the whole network into ten group:  
the number of equations of condition in these groups being 
from 60 to 83. Each group is reduced independently of the 
adjacent groups, and finally certain equations of condition are 
introduced in order to reconcile discrepancies that must other- 
wise appear at the common lines of junction. The number of 
base lines is four. 

14. 
The French have recently (1859-1 869) executed in Algiers, 

with modern instruments and methods, a network of triangu- 
lation extending from the frontiers of Morocco to those of 
Tnnis, embracing 10' of longitude. M. le Commandant 
Perrier who conducted the western half of this chain was one 
of the o5cers who, in 1861-62, acted in co-operation with 
the English in the connection of the triangulation of England 
with that of France-which connected in fact the Shetland 
with the Balearic Isles. I n  the course of a reconnaissance of 
the mountains near Oran in August, 1868, M. Perrier satis- 
fied himself that i t  was possible to connect geodetically 
Algiers with the peaks of the Sierra Nevada, some sixty 
leagues distant in Andalusia. He observed in fact two of 
these peaks from several of his stations, determining their 
approximate distances and heights, and proving that the path 
of the ray of vision did not in any ease come within 300 
metres of the surface of the sea. The only remaining diffi- 
culty was to obtain a visible signal suitable for the purpose of 
strict geodetic observations. 

Informe sobre la compennwion, por lroioa, dc lo8 error@ angularcd de la 
Red gemhiea de Espario. Madrid, 1878. 
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By the co-operation of the French and Spanish officers, and 
the liberality of their respective governments, the junction has 
just (in the autumn of the present year, 1879) been com- 
pleted in the most perfect manner by means of the electric 
light. 

Twenty miIes south-east of Granada is the highest peak 
in Spain-Mulhacen-11420 feet in height ; distant fiRy 
miles E. N. E. from this is Tetica (6820 ft.) ; the line joining 
these points forms one side of a quadrilateral of which the 
opposite side is in Algiers. The terminal points of the 
Algerian side, which is 66 miles in length, are Filhaoussen 
(3730 R.) and M'Sabiha (1 920 ft.), each of which is about 170 
miles from Mulhacen. The othcr two sides and the diagonals 
of the quadrilateral span the Mediterranean. Each station 
observes the other three, so forming four triangles whose 
spherical excesses are 

At each station the signal light was produced by a steam 
engine of six horse-power working a Gramme's magneto- 
electric machine in connection with the apparatus of M. 
Serrin. The labour of transporting to such altitudes this 
machinery, with the requisite water and fuel-in addition ta 
the ordinary geodetic instruments and equipment-and the 
maintenance of the whole in action for two months, necessi- 
tated at  each station the formation of a military post. After 
incredible difficulties, the whole was ready on An,nust 20th' 
the Spanish stations occupied by Colonel Barraquer and 
Major Lopez, the Algerian by M. le Commandant Perrier 
and Major Bassot. It was not however until the 9th of 
September that the electric light of Tetica was seen in 
Algiers-a red round star-like disk visible at  times to the 
naked eye; on the following day Mulhacen was seen, and 
the observations were thenceforth prosecuted until the 18th of 
October. The errors of the sums of the observed angles in  
the four triangles were 

leaving nothing to be desired on the score of precision. Thus 
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a continuous triangulation now extends from Shetland into 
1 Africa. 

Not content with this brilliant achievement, the deter- 
mination of the difference of longitudes of Tetica and 
M'Sabiha was resolved upon and carried out by M. Perrier 
and his Spanish associates. The method that should be 
adopted for this purpose had been previously made the 
subject of elaborate investigation and study a t  Paris with 
the apparatus actually used. The signals adopted were the 
eclipsing of the light every alternate second, the interval 
between the eclipse and the reappearance being one second. 
The signals ni~mbering 640 each evening, divided into six- 
teen series, were issued alternately from Tetica and MJSabiha 
from the 5th of October to the 16th of November; the obser- 
vations being registered chronographically. 

The difference of the personal errors of the observers, M.M. 
Perrier and Merino, had been thoroughly investigated at 
Paris, so that nothing waa wanting to render the results 
absolutely eatisfactory. 

15. 

We shall conclude this chapter by giving the formub for 
the solution of a simple quadrilateral with diagonals as in 

Fig. 55. 

the annexed figure. Let the epherieal excesses of the four 
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triangles with common vertex be t1, [,, tS, &,, then denoting 
by accents the observed values of the angles, the three angle- 
equations may be written thus 

where eo, el, e, result from the errom of observation. From 
these we have to form the quantities 

The eight unknown corrections to the eight observed angles 
(which we suppose to have been independently observed) may 
by-means of the three angle-equations be reduced to five, and 
expressed thus : 

and i t  remains that these must fulfil the condition 

sin PI, i n  g, sin 85 sin a4 
= 1. 

sin a1 sin B, sin B3 sin B, 

If we put 

i n  (A,'+ q )  sin (4' + c,) i n  (8; + 5) sin (A:+ I t ) - - + sin I ,,, 
sin (B,' + el) sin (B; + c,) sin (B,' + c3) sin (B,' + c,) 

cl = cot A, + cot B, , c,' = cot A, - cot Bl, kc., 
Co =-cB,'+c:-c~+c;; 

i t  follows that so, a,, x,, . . . being expressed in seconds, 

7 = ~ o x o + ~ , x l + ~ 2 x 2 + c 3 x 3 + ~ 4 ~ 4 .  
We shall mppose for simplicity that the angles have been 

observed with equal precision, then the condition that the 
sum of the squares of the corrections is a minimum leads to 
this result, 
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As a numerical example of the application of this method 
take a quadrilateral corresponding in magnitude and in form 
with that we have described above as forming the junction of 
Europe and Africa. Let the observed angles be 

A,' = 79 1 35.00, B,'= 60 17 56.03, 
A,'= 17 57 10.36; B,'= 22 44 32.14. 

The values of tl + t 2 ,  t2 + &, t3 + t, , & + [I, or the spherical 
excesses of the four large triangles, are- 

and the errors of the sums of the observed angles of the same 
triangles are respectively- 

and we have 

e ,  = - lN.76, el = + 2".72, e, = + lN.12, 

II 

and r, = + 0.46, el = 0,846, c< = + 0.808, 
r2 = +0.06, C, = 5.601, c,' = - 1.143, 
r, = - 0-90, c, = 0.764, c,' = -0.376, 
c, = -0.50; C, = 5.472 ; c,' = + 0.702 : 

also, c, = - 0.873, (3) = 62.613, 

and log ( ( c 2 ) +  4 c , ~ } - ~  (mod. sin 1")-I = 3.87872. 

log sin (A'+ r )  log sin (B+ c) 

9.8869572, 9.99991 88, 
9.6121499, 9.45397 15, 
9.9919850, 9.9388298, 
9.4888783, 9.5872441, 

sum = 8.9799704, 8.9799642 = sum. 

Hence, r]  mod. sinl" = + 0.0000062, and then 

3.8787, 

logq mod. sin 1" 4.7924, 
logr] ( ( $ ) + a  ~ 2 j - l  8.6711 ; 



266 CALCULATION OF TRIANGULATION. 

so that 7 ((c2) + 4 c,2)-' = + 01'.0469. The values of zo, q,.. . 
follow at once : N 

X" = -0.010, 
+ = + 0.040, 
x2 = + 00.63, 
x3 = + 00.036, 
X, = + 00.57 ; 

and the resulting corrected angles are 
0 1  N 0 1  

PI, = 50 25 41.650, B1 = 88 53 30.990, 
= 24 10 1.927, 1, = 16 31 28.933, 
= 79 1 34.054, 1, = 60 17 55.156, 

a, = 17 57 9.613, 1, = 22 44 31.907. 



CHAPTER X. 

CALCULATION OF LATITUDES AND LOXOITLTDES. 

THE problem:-Given the latitude of A, and the distance 
and azimuth of B from A, to determine the latitude and 
longitude of B and the azimuth of B at  B, would be very 
simple if the earth were a sphere, requiring merely the 
solution of a single spherical triangle. But the calculation 
is not quite so simple on a spheroid. I n  the accompanying 
figure AN is the normal (= p)  
at  A, NAB is the vertical plane 
at  B paasing through B, and the 
inclination of this plane to the 
meridian of A is the azimuth 
(=a)  of B. The inclination of 
the plane B NB to the meridian 
of ?-call i t  a,-is not however 
the azimuth of A at  B. This 
azimuth, a', is the inclination of 
the plane BMA to the meridian 
of B, BM being the normal at  
B. Let $, +', o be the lati- N 

tudes and difference of longitudes 
of A and B, and let ANB = 8, 

'I M 
Fig. 56. 

BNO = +. 
The difference of the angles a, and a' is a very small 



quantity: it may be thus investigated. In  the spherical 
triangle formed by the directions BA, B iff, B N  

sin a. sin ABM N B  sin ARM N B  COSU' 

where p, p' have the same signification as a t  page 104. Now 
the equations (lo), page 106, give A'sin p = A sin p', and 
thence me get 

sin p' -- - 1 - a 8 sin (+' - 4) ein (4' + $), 
sin p 

cos p' --  - 1 + ~ 8 e 3 c o s a s i n ~ c o s ~ ;  
COS p 

then, as we shall see in quation (2) following, the ap- 
proximate value of N B  : N A  is 

On substituting these in the expression for sin a, : sin a', 
there results, after some little reduction, 

If LL' be the number of degrees in the differences of 
longitude and of latitude between A and B, and if the ratio 
of the semiaxes be 294 : 295, 

so that only in long distances can this quantity be ap- 
preciable. 

We shall now investigate an expression for the angle sub- 
tended at  h7 by a distance a measured along the plane section 
AB. Let A P = a ,  B N P = e ,  N P = r ,  and the angle 
PlVO = 90"-\CI, then 

sin+ = cosBsin++sinBcos~cosa.  
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C being the centre of the spheroid we know that 

CN = eap sin $, 
consequently 

rs COBS I++ (7 sin Jl-ea p sin $I)e + ca 
= 1. 

a2 

Multiply through by as = p2 (1 -8 sina #), and we get on 
rearranging the terms the following : 

Using f and iL in the same sense au at  page 107, and 
putting 

f cose+A sine = F, 
-f sine+iLcose = 8, 

we get for the equation of the curve 

us+ Pa-1 = 0, (3) 

which is easily seen to correspond with the equation (la), 
page 107, if we put this last in the form 

Differentiate (3) successively with respect to 0, and put Urn, 
F,,, for the mth differential coefficients of U, P: thus 

d F  d H  - = H, and = -F, d e 
< = V I P +  UH, 
<=U2F+ZUlH- UP, 
7, = U8F+3U2H-3U,F- UH, 
Ti = U4F+4U,H-6UaF-4UlH+ UP, 

&c. 
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We require the values of U, U,, ..., Y, <, ... when B = 0. 
Let these particular values be (U), (IT,), ..., (7), (F;), ..., 
then (U) = 1 and (7) = 0, and 

0 = (U,), 
0 = (u2) + (JJ2, 
0 = (%)+3(q (<) ,  
0 = (U,) + 3 (U,)' + 4 (5) (5) t 3 (Q2, 

&c. ; 
(Q = 4 
(5) =f (U2)-f, 
(Q =f ('8) + 3h(U,)-h, 
(GI =f ( U J  + 4h(U3)-6f (Uz)+fi 

h. ; 
from which eliminating the 7's 

(U2) = -AS, 
(Us) = 3f A(l +AZ), 
(U4) = h2(4+9h2)-3fa(1+A2)(1+5h4); 

and finally, by Maclaurin's theorem, 

Now if e be the length of the arc, 

from which we get, dropping the parenthesis, 

on integrating and reversing the series there results 

As far as this series goes i t  would appear that all the terms 
vanish except the first when a = 90°, but this is not the case, 
as the fourth term does not vanish-in fact, when a = 90°, 

or practically 8 = p 8. 
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The following numerical example is taken from the volume 
entitled Extemioll of t k  Trianplation of Great Britain and 
Ireland into Frame and Belgium. At page 253 we have the 
distance of Feaghrnain from Greenwich and the angle at  the 
latter point between Feaghrnain and Chingford. Now the 
azimuth of Chingford is 359" 69' 58".360, so that the value of 
a i s  81°59'13/*.497. The adopted latitude of Greenwich is 
5 lo 28' 3gN.864 (resulting from a calculation which need not 
be here specified). The semiaxes adopted are 

a = 20926348, c = 20855233 ; 

then if ul, u2, a, be the first, second, and third terms of (5) 
expremed in seconds, 

log s 6.37108677, 
log ( p  sin I")-' 7.99282796, 

log u~ 4.36391473, ul = 6'25' 16".1088, 
u, = + -0025, 
us = - -0019, 
8 = 6' 25' 16".1094. 

Then we have to solve an ordinary spherical triangle, 
having given two sides 8, 90'-+, and the included angle a ; 
to find the other angles a, and cr, 

log wc f (90'-#I+@) 0.03429587, log cowc 0.41767856, 
logcos 4 (go0-+-8) 9.98273156, log sin 9.44167235, 
log cot f a  0.06093582, log cot 0.06093582, 

logtan f (a,+o) 0.07796325, log tan 9.92028673 ; 
0 t I' 

4 (a, + o) = 50 6 55.3757, 
a, = 69 53 11.1769, 

f (a,-@) = 39 46 15.8002, 
o = 10 20 39.5756 ; 

the small correction a'-a, amounts in this caw to -OM.2319. 
Thus me have a'. 

The third side of the same spherical triangle, namely that 
opposite to Greenwich, is easily found to be 

90"-\L = 38' 4' 42"-2145. 
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Then by (5 ) ,  since \L-+ is only a few minutes, P(+--4) is the 
dietance of the parallels of Greenwich and Feaghmain ; and 
this distance divided by the radiae of curvature for the ap- 
proximate mean of the latitudes of the two stations gives 
their actual difference of latitude. 

Returning to the general queation, let ue take first the case 
in which the value of a is a right angle, and s not greatly 
exceeding, say, a degree. The azimuth a' in this case will 
not differ from a, by any perceptible quantity; put 

d = 9 0 ° - v ;  
here v is called the ' convergence of meridians.' 

Take a point 3 on the meridian of A in the same latitude 
as B, so that the angle B'NO = BNO, and let 3iV.A = 11, 
then by (21), page 45, 

and q being the radius of curvature of the meridian at  A, 

4-+' = pn : Q. 

Thus we have, referring again to the equations (21), 

v = 0) sin($-411). 

These three equations complete the solution of this case. 
I t  will simplify matters if we avoid the reduction of 11 to 
+-+I. This we may do by at  once computing 

for the error thus introduced into the last two equations of 
(6) is of the order e2#, and i t  is easy to convince oneself by a 
short calculation that for the distances we are contemplating 
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this may be neglected. The errors of these values of o and v 
are in fact 

From the results just arrived a t  we can at  once solve the 
more general problem when a haa any value whatever. From 
B draw a perpendicular to the meridian of d meeting i t  in P, 
and let the spherical ex- of the triangle ABP be t, then 

AP=scos(a-jc) ,  BP=ssin(a-he) .  
Let the latitude of P be +,, the radius of curvature for the 

latitude 4 (++ 4,) being Q, : let also the difference of latitude 
$,-+' = 7, then 

2 
c = -  sin a cos a, 

2 e p  

8 sin (a - & r) 
W = 

p cos(+'+&I])' 

Here and p  correspond to P, that is to latitude 4,. It 
is to be remembered that in this calculation c is negative 
when cos a is negative. With respect to the last equation 
expressing the convergence, the angle at  B between A and P 
is equal to 90'-a+€, and the azimuth of P at  B ie 

9 0 " - ~  sin (+,-+I]); 
thus the azimuth of A a t  B being the sum of these ie 

180°-a-v. 

We shall now give a numerical example of the application 
of these formulse, and for this purpose sllall select the shorter 

T 
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side of the spheroidal triangle, of which we have a t  page 1 l o  
the exact elements. We require the following table :- 

Tlie data for the calculation are 

It is nccessaiy first to calculate an approximate value of +, 
by means of the formula 

t,he result is $, = 53" 4' 8". Then putting E-I for 2 e p  sin I", 
t,he calculation will stand thus : 

log r9 
log mn a 
log con a 
log E 
r = 14".78a 
log tan a 
log hTJ 9, 
7 = 7".413 

11.27994 0 , 8 ,  

9'54745 a - $6 = ao 39 1 2.31 3 
9.971'5 a - @ = 20 39 7.386 
0.37120 
1.16974 log s 5.6399657 
9.57630 log coe (a - Ir) 9,971 1550 
0.1 2397 log (f# sin I")-' 7.9939053 
0.87001 40~7".411 3~6050260 

log s 5.6399657 9'-9 " b 591b98 
log sin (a - 9f) 9.5474230 9' - 53 3 59.998 
log @ nin I")-' 7.9927965 
log sec (9'+ )7) 0421 2153 9' + = 53 4 2.469 
2520".ooo 3.4074005 w = o 42 0.000 

log sin (9'+ 37) 9.9027368 9' + 97 - 53 4 4.940 
a014".36r 3'3041373 v = 0 33 79'5i9 
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Thus we have the azimuth of A at  B 158' 47' 23".181 ; i t  
should be 158' 47' 23".182. And the errors of latitude, longi- 
tude, and azimut,h are 

a+'=-oJ'.oo2, ao=o'~.ooo, aat=o".ooi. 

I n  the case of distances exceeding a hundred miles i t  may 
be necessary to proceed in the following manner. The angle 
0 can be obtained with any degree of accuracy that may be 
required from the serieii already investigated, then by a 
simple application of the rules of spherical trigonometry we 
have a,, \Ir, and o, with any accuwy that may be reqnired- 
a' following from a,, as we have seen by a very small aud easily 
calculated correction. With respect to +', the latitude of B, 
the only direct expression for i t  is obtained thus : join B with 
the centre of the spheroid and let A be the geocentric latitude 
of B, then if B N =  7, 

tan A r sin +-e2p sin + -- 
tan 9 - r sin $ 

8 

but tan A = (1 - e2) tan +', therefore 
tan $' p sin + - 1-e2- (1 -e2) - - 
tan Jl ?sin+' 

and a very approximate value of p : 7 nlay be written down at  
once from (2). Still, the formula (9) is inconvenient for 
actual calculation, and it is practically easier to find the dis- 
tance of the parallels of the two stations and then to divide 
this distance by the radius of curvature at the mid-latitude. 

Let S be the distance of the parallels of A and B, then from 
the expression (5) for 0 in terms of 8 it is easy to show that 

To be very precise, + &e2 e8 sina 2 a sin 2 + should be added 
on the right side of this equation, but i t  may be safely 
neglected as in all cases quite evanescent: therefore by 
equation (22), page 45, it follows that 

sin 4 (a, - 
S = 8  . 

ea 
a ) { 1 + 1 2 ~ ~ s a 4 ( a t - a ) ] .  (11) 

sm 4 (at + a) 



I n  the calculations we have been exemplifying, the results 
depend on the elements assumed for the figure of the earth ; 
but it is often necessary to get results not so limited, and 
which can be readily modified to any change of the elements. 
Starting from the point A with a given latitude rp and azi- 
muth a, we compute, with numerical values a, e, the latitude 
and longitude and direction of the meridian at  B ; let (cp'), 
(w), (a') be these results. Had we used a + ba, e+be, we 
should have obtained results of the form 

($')+ h8a + li'be, 
(w) + jba+j'be, 
(a') + k6a + Wbe. 

I f  then i t  were subsequently necessary to pass from B to a 
third point C, and obtain the latitude, longitude, and direction 
of the meridian there with the altered spheroidal elements, 
we have to take into account in so doing not only the varia- 
tions ba, 6e, but the variations of latitude, longitude, and 
azimuth which have been alrcady introduced at  B. It is 
necessary therefore to consider this more general question : 
required the increments to the latitude, longitude, and direc- 
tion of the meridian a t  B, when the latitude of A and the 
azimuth there of B receive increments brp, ba, the elements of 
the spheroid a t  the same time being changed from a, 8 to 
a+aa ,  e+be. 

In  solving the spherical triangle ABO, having given the 
angle at  A and the containing sides, the variations of a and e 
cause a variation in 8, for approximately 

and bn eOsin2$ 
- - b O = e - - +  be. 

a 1-easin2+ 
This supposes the distance 8 to be not excessively great. 

I f  it should greatly exceed the longest lines of observation in 
ordinary triangles a nearer approximation to 0 must be 
adopted, and there is no difficulty in supplying the cor- 
responding term in 88, but to simplify our formulse this case 
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is not considered here. I n  applying to the triangle ABO 
I 
I the formulae, page 43, we shall introduce the convention that 

azimuths are measured from north hy east from 0' to 360°, 
thus 360'-d is the third angle of the triangle, viz. that at  B; 
also it is unnecessary to retain the distinction between a' and 
a,. Longitudes are to be considered positive towards the 
east. Thus 
cos$8a8= sino8++cosQ,cosoba-sinJIsina'bB, 
cosJIbo=sin$sino8~-sin6cosa'8a-  mna'86,(13) 

a + =  coso8~+e ines ina '8a -  cos a'8 6. 
In  the first two of these equations $ may be replaced by +', 

and in the third sin 6 sin a' may be replaced by -cos $J sin o. 
In  order to determine 89' we must revert to (9), putting i t  
in the form 

where @ is put for sin $-sin 4. Differentiating this and 
omitting the last term, which is very small, 

1 -e2 sin + sin + -- cos $I 
sec2 4' 8 4' = 8qr--- 

(1 - e2) cos2 JI 1 - e2 cos$ 84  

or with sufficient approximation 

Put for brevity 1 + e2 cos2 4 = n, then the third of equa- 
tions (1 3) gives 

2 0  cosqrebe a@'= cos o b4-?L sin o cos 4 8a-n cos a'8B + 
(L-eZ)l  

If then $', a, a' are the same functions of 9 + 84, a +  8 a, 
a + sa, e + 8e that (+'), (o), (a') are of 9, a* a, e, me have 
finally equations (1 4) which are of great importance : 

aecoscp'e8e 
#-($I? - cosalcp-rdnacosgla- ncosalQB+---- 

( I  

coa$f{a-(a)}=ain9'sinsi89- sinBcoea'la- sina'QB 

coe$'{af-(af)}= sina81#1+ oos9cosala-dn9'mna1IO. 

If 8 4  = 0 and aa = 0, then, eliminating be,  
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where i t  is to be remarked that the coefficient of be vanishes 
when (3-e2) sin2 + = 2 ; this condition exists in the vicinity 
of 55' latitude, nearly in the centre of Great Britain. 
Measurements in these latitudes therefore have in themselves 
no weight in the determination of the eccentricity. 

It is to be remembered that in equations (13), 88 involves 
not only ba and be but also 8+. The coefficient however of 
b$ here is very small and may generally be omitted. 
By differentiating (10) we find without any trouble the 

expression for b S  in terms of ba, be, ba. For instance, 
taking into consideration only ba and be, 

8. 
!J!he calculation at page 27  1 was originally made with the 

view of determining the length of the parallel of 52' con- 
tained between the meridians of Greenwich and Feaghmain. 
Let p' be the normal corresponding to the latitude of 52', 
then the leugth of the arc of parallel is P = sin 1"coa 52', 
w being = 3723gV.5755 as we have seen, then 

log 3723gt'.5756 4.57100472, 
logp'sin 1" cos 52' 1.79652713, 
log 230944.07 6.36763185. 

This value of 9 is however dependent on the particular 
elementa assumed for the figure of the earth : increments ba, 
bb to the semiaxes will produce an increment of the form 
yba + y'8b to be added to the length of parallel just obtained. 
We have 

p2 = a4 
a2 cos2 q + 6%in2 q~ ' 

and taking the logarithmic differential, we get without much 
trouble 

which me shall write thus 
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Similarly, p' corresponding to # = 52", let 

then 
8 P  b o  bp' 
--A p -  +" 

P 
Now the latitude of Greenwich i n  this case has itself to 

receive an increment 8+ = 4 8 a +  k,86, so that putting 

8 P  a8 = -8-  and 8a  = 0, 
P 

the second of equations (1 3) gives 
8 o  sin o 8 8 P - = tan~r-(d,8a+k,6b)+ -sina'sec+--. 
o o 0 P 

Thus we get  

sin o 8 + bb (kt tan$- + k -  sin a'sec++k'). 
o o 

And finally; the length of the arc of parallel in latitude 
52" between Greenwich and Feaghmain, the semiaxes of the 
earth being 20926348+8a and 20855233+86 feet, is 

2330944".07 + 0.0062 6a-0.0006 86. 
So also for Greenwich and Mount Kemmel in Belgium, 

the length of the arc of parallel in 52" is 
634167".39 + 0.0027 8a- 0.0006 86. 



CHAPTER XI. 

HEIGHTS OF STATIONS. 

THE direction in which a signal B is seen a t  an observing 
point A is determined by the direction of the tangent a t  A to 
the path of the ray of light passing between A and B. This 
direction differs from that of the straight line joining A and 
B on amount of terrestrial refraction. The displacement, 
resulting from refraction, of the direction of B, takes place 
almost wholly in the vertical plane which we may with 
~u6cient  accuracy consider common to d and B. Lateral 
refraction sometimes exists, affecting to a very small extent 
horizontal angles, but we here are concerned only with the 
more ordinary phenomenon which affects the measurement of 
zenith distances. For the theory of this refraction we may 
refer to some able papers by Dr. Bauernfeind in the d s t r w m -  
ische Nachridlen for 1866. The amount of terrestrial re- 
fraction is very variable and aot  to be expressed by any 
simple law : the path of a ray of light, inasmuch as i t  depends 
on the refractive power of the atmosphere at  every point 
through which i t  passes, is necessarily very irregular. This 
irregularity is very marked when the stations are low and the 
ray grazes the surface of the ground. I n  the plaine of India 
i t  has been observed that the ground intervening between 
the observer and the distant signal, from being .apparently 
convex in the early part of the day, changes gradually its 
appearance as the day advances, to a concavity-so that a t  
sunset the ground seems to slope up to the base of the signal 
tower which in the early morning waa entirely below the 
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horizon1. Under such conditions refraction is often negative: 
the coefficients ranging from -0.09 to + 1-21. 

I n  Great Britain the refraction is greatest in the early 
mornings; towards the middle of the day i t  decreases, again 
to increase in the evenings-but this rule is not without 
remarkable exceptions. From a series of carefully conducted 
observations by Colonel Hossard at  Angouleme a it appeared 
that refraction is greatest about daybreak ; from 6 or 6 A.M. 

until 8 A.M. i t  diminishes very rapidly; from 8 A.M. until 
10 A.M. the diminution is slow; from this hour until 4 P.M. 
refraction remaius nearly constant ; after that it commences 
to increase. - 

The average amount of refraction, by which is meant the 
difference between the true and the apparent directions, 
varies from about a twelfth to a sixteenth of the angle sub- 
tended by the stations at  the centre of the earth. The 
larger values are found generally on the seaboard, the smaller 
valuee remote from the sea. The amount of refraction may 
be determined thus: let h, I' be the known heights of two 
stations A, B-obtained for instance by spirit levelling : at  A 
let Z be the true zenith distance of B, and at B let 2' be the 
true zenith distance of A, C being the centre of the earth, 
which we may suppose a sphere of radius r, let the angle 
ACB = v, then in the triangle ACB 

f (Z'+Z) = 90°+f a, 

v A'-h 
tan tan 4 (I-2) = 

h ' + 2 r + ~ '  

which determines Z and 2'. If we enbstitute for tan f v the 
first two terms of its expansion in series, the second equation 
is easily put in the form 

where 8 is the distauce of the stations A, B meamred on the 
sea-level. The assumption that the earth is a sphere may be 
practically remedied by using the measure of curvature of the 
surface in the vicinity of the stations for 1 : r4. 

Account of thc Q r d  Trigonomcttiod Suroey of India, voL ii, page 77. 
' Mtm.  dc Dip6t Gtn. de la Gumre, vol. ix, p. 451. 
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The coefficient of refraction is the ratio of the difference 
between the observed and real zenith distance a t  either 
station to the angle a :  thus k being the a n d h k n t  of re- 
hetion, t, z' the o b m d  zenith distances, 

Z-a Z' -z' k=- or k = .  
v 0 

These two values however do not always agree. The fol- 
lowing table contains some determinatione-selected at random 
--of the value of k obtained in this manner from observations 
made on the Ordnance Survey :- 

The most abnormal coefficieut here shown is that at  Ben 
Nevis, and i t  is worthy of notice that for a fortnighdwhen 
the greater part of the observations were made-the state of 
the atmosphere at  the top of the hill was most unusually calm, 
so much so, that a lighted candle could often be carried from 
the tents of the men to the observatory, whilst a t  the foot of 
the hill the weather waa wild and stormy. 

The value of the coefficient of refraction may also be ob- 
tained from the reciprocally observed zenith distances of A 
and B, independently of the knowledge of the heights of those 
stations. For assuming the refraction to be the same a t  both 

STATION. 

Ben Lomond 
Ben Nevin ... 
Dunkerry ... 
Precelly ... 
High Wibays 
Pnce lb  ... 
High Wilhays 
Hensbarruw 

Coringdon ... 
Dunnone ... 
Trevoee Head 
Kamn~innia 

No. 
Oss. 

5 
19 

4 
5 

14 
6 

Z, Z' 

0 , ,, 
go I 21.1 

90 37 2.0 

go 31 51-0 
903245.0 

go 41 21.7 
go 38 26.7 

go 33 51.8 
go I 54.0 

90 1' 54.0 
go 17 154 

90 3 18.2 
90 15 '7.8 

HEIGHT. 

ft. 
3rga.a 
4406.3 

1706.4 
1757.9 

aoag.6 
1757.9 

2039.6 
1oa7.o 

655.6 
771.9 

242.6 
799.8 

k 

47'9 
9 4 2  

.076a 
07;l 

-076 r 

d 4 7  

v 

I, 

1 23m-7 1 
1 38709 1 
1 4843'0 1 

'p 

i9 i 8  3;s 
90 33 25.3 

go a6 56.1 
g o l f + + . +  

go 36 14.3 
go 31 36* 

go 31 32.8 
89 59 20.1 

90 10 30.4 
go 14 57.1 

90 1 5.6 
90 13 9.5 

, 

xa 
17 

16 
x a  

ao 
10 

1713.7 I 1 4774 1 
4749 1 



stations (and for this end #e obeervations should be simul- 
taneous) Z= z+kv and Z'= z'+kv, thixdke 

From the mean of 144 values of k determined from the 
observations of the Ordnance Survey it appears that the mean 
coefficient of refraction is -0771. If we arrange the differeut 
values in order of magnitude, the extremes are -0320 and 
-1058, while the 72 which hold the central position are con- 
tained between -0733 and ,0804, the mean of these 72, viz. 
-0768 differing but little from the general mean. Thus i t  
would appear that the probable error of a single determination 
of k is about + -0035. 

But i t  is necessary to discriminate between rays which 
cross the sea and those which do not. The result, having 
regard to the weights of the single determinations, is finally 
this- 

for rays not crossing the sea, k = ,0750; 
formyscrossingthesea, k=.O809; 

a result which is borne out by observations in other parts of 
the world ; for instance 1, in the Survey of Massachusetts the 
value of k adopted for the sea coast is--0784, while for the 
interior it is -0697. 

From the preceding equations we get f (2'-2) = 
4 (d-Z) = 90'-,+,(a-k). 

Let z, the observed zenith distance of B at  A, be replaced by 
90" + 1, so that 8 is the ' depression ' of B, then (1) becomes 

or if we have also the depression a' of A as observed at  B 

The last factor in the list two equations may be safely 
omitted. 

Profeeaha1 Papers of the Corprr of Engfmrr U.S.A., No. 11, page 143. 
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If further we consider only the cases of distant stations 
when b seldom exceeds a degree, we may put 

2 r 
Put p = - then taking the eart.h as a sphere of mean 

1-2k 
radius such that log r = 7.32020, 

for k = -0750, log p = 7.69181, 
k = .0809, log p. = 7.69788, 

which suffice for ordina,ry purposes. 
When the height R' of B has been determined from its ob- 

served zenith distance at  A by the formllla (4), the error of h' is 

Suppose the distance 8 to he n miles, the probable error of 
the observed zenith distance + e  seconds, that of the co- 
efficient of refraction 2 -004, then the probable error, expressed 
in feet, of /I' mill be approximately 

When the observations a t  B and B are mutual, we may 
either eliminate the coefficient of refraction by using the 
formula (31, or we may get two different results from a mean 
assumed value of k, and then combine these results by 
assigning them weights deduced from the consistency of the 
observat.ions from which they are separately derived: the 
reciprocal of such weight according to the formula just 
given will be r2 +,IK nZ. 

When at  each of three stations we have the observed zenith 
distances of the other two, the deduced differences of height 
will exhibit a discrepancy. Let the computed differences of 
height be C- B = A,, B - 8 = A,, A -  C= R,, then we 
ought to have A,+ li, +a = 0. This will not generally be 
the case, and we must apply corrections 4, x2, xs to these 
quantities, such that 

x,+x2+x3+K,+h2+~, = 0, 
and if w,,  ao,, ws be the weights of the determinations of R , ,  
R , ,  h, the quantity 

wlx; + wzxz2 + w3x: 



HEIG-HTU OF STATIONS. 285 

must be a minimum : a case analogous to that of getting the 
corrections to the angles of a single triangle. Or we may 
proceed thus: suppose there are four points, mutually ob- 
serving one another. Referring the heights to that of any 
one of the points, let them be 0, x, y, z, then me have six 
equations- 

x + a  = 0, 
y-$+a'= 0, 

y + h = o ,  
2-y + b'= 0, 

z + c  = 0, 
2 - z +  c'= 0, 

with assignable weights, from which z, y, z are to be obtained 
by least squares. 

The principal lines of spirit levelling covering England and 
Wales were reduced in this manner: the number of unknown 
quantities being ninety-one. I n  the reduction of the levelling 
of Scotland there were seventy-seven unknown quantities. 

Suppose that at  a station of height A, the horizon of the 
sea is observed to have a depression A, if its distance be 2, 
equations (3) and (4) give 

and eliminating 2, R and A are thus connected, 

R =ptan2+A. ( 5 )  

Let A', R" be the heights of two stations 8, By whose 
distance apart is c, 8 the depression of B as observed at  A. 
Let C be any other point in the ray joining d B : for instance, 
C may be a signal which appears to be exactly in line with B. 
Let h be the height of C, a+ :', c, a-$c its distance from B 
and B respectively, then we have these three equations : 
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of which the third, obtained by eliminating 8 from the first 
two, is the equation to the path of the ray of light joining 
AB. The point a t  which this ray approaches nearest the 
surface is determined by making the differential coefficient of 
1 with respect to 8 zero ; thus we get 

where a, determines the place of the minimum height of the 
ray and A, its amount. If we take for instance the csse of 
Precelly in Pembrokeshire and High Wilhays in Devonshire, 
whose heights are given in the table, page 282, and which 
are 93 miles apart (loge = 6.69221) we find the minimum 
height of 677 ft. occurring a t  about 44 miles from the lower 
and 49 from the higher station. 

So for the stations Tetica and M'Sabiha, page 262, whose 
mutual distance is 225.6 kilometres, the nearest approach of 
the visual ray to the surface of the Mediterranean is 1077 ft. 

Two stations whose heights in feet are i', R" will not under 
ordinary circumstances be mutually visible over the surface 
of the sea, if their distance in miles exceeds 



CHAPTER XII. 

CONNECTION OF GEODETIC AND ASTRONOMICAL OPERATIONS. 

THEORETICAL considerations, as we have seen in chapter IV, 
combined with observation and measurement, have shown 
that the figure of the earth is very closely represented by an 
ellipsoid of revolution. It is not however exactly so; the 
visible irregularities of the external surface and the variations 
of density of the material composing the crust, superinduce 
on the ellipsoidal form undulations which we cannot express 
by any formula. Extensive geodetical operations enable us 
however to determine a spheroid to which the mathematical 
surhce of the earth csn be very conveniently referred, and from 
which its deviations are probably very small. Designate this 
spheroid of reference E, and the actual mathematical surface 
of the earth 8. Let A, B, C, ... be a series of points on 8, 
A,, B,, C,, ... their projections on E, then, as far as our present 
knowledge extends, the linear magnitudes Ad,, BB,, CC,, . . . 
are extremely small; that is to say, that representing the 
normal distance of S above E by 5, no observations yet made 
lead us to suppose that ( is anywhere anything but very 
minute compared with the di5erence of the semiaxes of the 
spheroid. I n  the early ~er iod  of geodetic science the irregu- 
larity of the earth's figure made itself apparent principally 
by the very discordant values that mere obtained by different 
combinations of short arcs for the ellipticity of the surface. 
The discordances resulted from the fact with which we are 
now familiar, that the observed latitude of any station, 
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although from its surroundings i t  may be apparently quite 
free from any suspicion of local attraction, is yet liable to an 
error of one or two seconds. This amount indeed is often 
exceeded, and i t  is not very uncommon to find, as in the 
vicinity of Edinburgh, a detlection of gravity to the extent 
of 5", while in the counties of Banff and Elgin there are cases 
of still larger deflections, the maximum of 10" being found 
at  the village of Portsoy. At the base of the Himalayas, 
where we should naturally expect a large attraction, i t  
amounts to about SO", diminishing somewhat rapidly as the 
distance from the mountains increases. 

A very remarkable instance of such irregularities exists 
near Moscow l, brought to light through the large number 
of observed latitudes in that district. Drawing a line nearly 
east and west through the city, this line for a length of 50 or 
60 miles, is the locus of the points a t  which the deflection 
of the direction of gravity northwards is a maximum, 
amounting nearly to 6" in the average, while along a parallel 
line eighteen miles to the south are found the points of 
maximum deflection southwards. Midway between these 
lines are found the points of no deflection. Thus there is 
plainly indicated the existence beneath the surface, if not 
of a cavity, yet of a vast extent of matter of very small 
density. Deflections much exceeding these in amount exist 
in the Caucasus and in the Crimea. 

If we conceive the small quantity ( to be expressed in 
terms of the latitude and longitude, then t.he surface S is 
strictly defined. I f  we put 

then t, q are the inclinations of the surface S a t  A to the 
surface B at  A,, thus the latitude of A, is greater by [than 

' Untermchungen uder die in der Noclia von Mmkau statVEftdendc L a d -  
Altradion, von G. Schweizer. Modran, 1863. 
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the latitude of A, and the longitude of A, ia greater than 
that of A by q aec $. 

With respect to the observed direction of the meridian, 
in the adjoining figure, let Z, Z, be the zeniths of A, A,: P 
the pole, Q the place of a terrestrial signal referred by ita 
direction to the sphere of the heavens. Z,PH and 4 Q K  

being each equal to 90°, as also 
II ZPh and ZQ k; the azimuth of Q 

as measured with a theodolite is 
a = hk, whilst H K  = a, is the 

g- same azimuth aa referred to the 
spheroid E. Produce HPZ, to 0 
and draw ZO perpendicular to 
Z,O, then ZIO = and ZO = q. 
Then since P Z =  90"-+, H P h  is 
q sec +, and therefore the distance 
of h from PH is rl tan +. Again 
the angle 

&sin a-q cosa 
ZQZ, = 

Fig. 57. 
9 

COB e 
where e is the angle of elevation 

of the signal, and the distance of k from KQ is consequently 
(I sin a-q cos a) tan e. Thus me have 

Supposing then that, as is always the practice, the pole 
star is observed in connection with a mark which is at  a 
zenith distance of very nearly 90°, the term in tan e becornea 
insensible and may be omitted. Thus there exist the fol- 
lowing relations between A and A,. If $, o be the latitude 
and longitude of A, $,w, the latitude and longitude of A,, 
a the observed azimuth of a terrestrial signal, a, the same 
azimuth aa referred to A,, then 

Since measured base lines are reduced to the surface of the 
sea, and since the angles measured by theodolites are the 
same as if meamed also on that surface, i t  follows that 

U 
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trigonometrical operations may be considered as virtually 
conducted on the surface 8. But the angles measured 
amonget the points A, B, C, . .. are not identical with the 
angles measured amongst their projections A,, B,, C,, . . . 
It appears in fact from (1) that the horizontal angle mea- 
sured between two objects whoee azimuths and elevations 
are a, a', e, e', is affected to the extent 

[(aina'tand- ainatsne) -tl (cosa'tane8-cosatane) 
by the difference of the zeniths of A and A,. Since therefore 
for the distant objects observed in a trigonometrical survey, 
e is generally very small, and since in ordinary cases &, q 

are but a very few seconds, we infer that the angles observed 
among the points A, B, C, . . . on S are not sensibly different 
from the corresponding angles between the points A,, B,, 
C,, ... on E. We are therefore justified in regarding the 
triangulation as projected on E, and calculating i t  as indicated 
in chapters ix and x. 

Suppose now that we have given the distance of two points, 
A, B, at  each of which there are astronomical determinations 
of latitude, longitude, and azimuth: and let the following 
not.ation express the correspondence of the observed elements 
with the reduced quantities appertaining to A,, B, 

A A1 B BI 
4J 4+6 4' 4'+ &' 
0 tlsec4 0 o+fsecr#,' 
a a + q t a n @  a' a' + tl' tan 4'. 

If starting from A with the given distance, and a, 4 we 
calculate the elements at  B, and get the numerical results 
(4') (w) (a'), then with the same distance, and a + q tan C/J 

for a, r# + [ for r# and a longitude 7 sec 4 for A,, we should 
by equations (1 4) page 277, omitting dB, get for B, 

r#; = (+') + coso[ - a s ino  sin r#q, (3) 
. . 

sin 4' sin o sin t3 cos a' 
.I = (4 + + - ( g tan 4 -ec4 )  tl, 

sin o sin 4 cos o 
a; = (a') + C + cos4' ; 
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these being equated to the elements at  B, as written above, 
we get 

= (#')-+'+coso&- n s i n o  sin+q, 
sin +' sin o 

sec +'q' = (0) - * +  cosdi € 
sin B e c ~ 1  a' 

+(-  c o s y  tan$+=$) ?, 

sin o hQ{= (a')-a' + -& + sinQmsa 
COS +' cos #' '. 

Hence i t  appears at  once that the observation of the difference 
of longitude gives us no information that is not also given 
by the observation of azimuth ; i t  affords however a check 
upon the work. 

If instead of two points we have a network of triangles, 
then at  every point where there are astronomical de termb-  
tions we can express the &' and rl' belonging to that point 
in terms of 5 and q. Now [ and q are unknown, but we may 
suppose the spheroid E so placed with reference to &its 
axis parallel to the earth's axis of rotation--or rather so 
placed with reference to the portion of S covered by the 
triangulation that the sum of the squares of all the &'s and 
?'s is a minimum. This condition determines [ and a and 
&', q' ... for all the other stations follow from the equations. 
It is further to be supposed with reference to the position 
of E that the mean value of 5 over the sn r fm conaidered 
is evanescent. 

By the method just explained we see how in a network of 
triangulation a system of deflections may be assigned having 
reference to a definite ellipsoid E in a definite position: for 
any other ellipsoid differing slightly from E a somewhat 
different system would have resulted, and in fact if we leave 
the semiaxes indeterminate-that is to say--express them in 
a symbolical form, then we can from the equations of con- 
dition which arise determine that particular ellipsoid, call 
i t  @?, for which the sum of the squares of all the deflections 
is a minimum. Thus we obtain an ellipsoid which we may 
consider to represent better than any other that portion of S 
over which the triangulation extends. 

U 2 
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Let the semiaxes of @ be (a) t da  and (c) + dc, where (a), 
(c) are approximate numerical values, da, dc small quantities 
to be determined. It is necessary to remark in the first place 
that the spherical excesses of the triangles having been calcu- 
lated from the elements (a), (c), there i~ an inconsistency in 
supposing these triangles to be laid on &. But i t  may be 
shown that the error thus introduced is insignificant. 

The spherical excess c of a triangle being proportional to 

if we take the logarithmic differential and substitute for $ in 
the result ite equivalent in terms of u the reduced latitude, 
we get 

To form some estimate of the effect of this alteration of c 
take the large polygon calculated a t  page 222. The spherical 
excess of the largest triangle here is 49".03. If, taking da, 
dc of opposite signs so as to make the effect on c the greater, 
we put da  = 1000 R., dc = -1000, we get -dr = wlm c 

approximately. Thus as in the largest triangle such an 
alteration would affect the spherical excess by less than one 
hundredth of a second, i t  is clear that the sides and angles 
of the whole figure are not appreciably affected by any such 
change in the elements of the spheroid. 

Instead of using the polar semiaxis c, let QE! be defined by 
(a) + da  and (e)+ de, and in equations (1 4), page 277, let d e  
be replaced by its equivalent in da and de. Then aa in the 
case we have just considered, put d$ = &, d a  = 7 tan r$, and 
for brevity write those equations thus: 

4,' = ($ ' )+At  +B s + C  da + E  de, 
w,' = (o) +A'& +Rrl + C'da +E'de, 
a; = (a') + A N [ +  XIrl + C'da + E8'de, 

where B includes a term aeo #J an in (3). Here ($1, (o), (a') 
are the astronomical elements at  B, aa calculated with the 
observed latitude and azimuth a t  A, and with the (a), (e) of 
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the approximate spheroid. Then if ('4 belong to B, 
('=($')-+'+A & + B  q + C  d a + B  de, 

see+'< = (w) -o  +A' &+3 q+C' da+E'de ,  
tan t#'$ = (a3 - a'+ A"&+ 3 ' q  + C"da + E"de. 

In  the Account of the Principal fiungulatioa of &eat 
Britain and Irehnd will be found at  pages 693 and 694 
seventy-six equations of the kind just written down ; of these, 
thirty-five arise from observed latitudes and forty-one from 
observed azimuths and longitudes. The solution of these 
equations by the method of least squares determines the axes 
of that particular spheroid & which most nearly represents 
the surface of this country, and also, by (q, the inclination d 
the surface of Qe a t  Greenwich Observatory-to which ( q  
belong-to the surface S there. From these follow the Qq' 
of every other point. The semiaxes of @! are 

a = 20927006, c = 20852372. 
The azimuth and longitude equations are, from the nature 

of those observations, entitled to much less weight than the 
latitude equations : the azimuth equations in particular are 
directly affected by accumulation of errors of the observed 
angles of the triangulation. Hence the explanation of the 
fact that the average values of the resulting quantities q is 
somewhat larger than that of the t's. It is interesting to 
compare the values of the quantities (, which we may take to 
be local deflections of gravity in the direction of the meridian, 
obtained as above, with the deflections cslculated from the 
form of the ground around the stations-for those stations a t  
least where the means of making such calculation exist. 

I n  estimating from the form of the ground the deflection 
of gravity, an element of uncertainty exists in our not know- 
ing exactly to what distance from the station the calculation 
should be extended; for according to the views explained at  
page 97 i t  is very doubtful whether the influence of distant 
maesee should be taken into account. Accordingly in the 
fourth column of the following table the influence of mames 
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a t  distances exceeding nine or ten miles is excluded-in the 
fifth column the calculation is extended to these more distant 
masses :- 

Dunnose . . . . . . . . .  
R o n i b  . . . . . . . . .  
Week Down . . . . . .  

. . . . . .  Port V d e y  
Clifton . . . . . . . . .  

... Burleigh Moor 
...... Hungry Hill 

Feaghmain . . . . . .  
Forth . . . . . . . . .  

... Tawmghmore 
Lough Foyle ...... 
Kellie Law ...... 
Mensch . . . . . . . . .  

. . . . . .  Ben Hutig 
Calton Hill ...... 
Cowhythe ...... 

Near Ve+ nor 
Isle of Wight 

Yorkehire ... 

Cork . . . . . .  
Kerry . . . . . .  
Wexford ...... 
May0 ...... 
Londondarry ... 
Fifeahi re . . .  ... 

. . . .  Hebrides.. 
Sutherhnd ... 
Edinburgh ... 
Banff~hire ... 

The quantities in the last two columns for Cowhythe are 
only roughly calculated. 

The triangulation being considered as projected on the 
ellipsoid ei! as finally determined, we can at each point where 
azimuth observations have been made obtain an apparent 
error of observed azimuth a t  that point. On forming these 
errors for sixty-one stations in this country i t  is found that 
twenty-three errors are under 3", ten between 3" and 4", and 
there is one error of 11". The probable error of azimuth 
of the triangulation of Great Britain ss a whole is k or'.69. 

5. 

The calculstion of the disturbance of the direction of gravity 
a t  any station J due to the irregular distribution of masses 
of ground in the surrounding country presents no difficulty 



AND ASTRONOMICAL OBSERVATIONS. 295 

if we possess a map of the district, showing by contours or 
otherwise the heights of the ground. Let there be drawn on 
this map a number of circles having J for a common centre, 
and also a series of radial lines through J: thus dividing the 
country into a series of four-sided compartments. Let a,, a' 
be the azimuths of two consecutive lines, r,, d the radii of two 
consecutive circles, and let i t  be required to find the attraction 
at J -o r  rather the component of the attraction acting in the 
direction north-of the mass M of the compartment contained 
between those limits of azimuth and distance: the upper 
sub of M being m p p o d  a plane. Put a, r for the azimuth 
and horizontal distance of any particle of this mass, e its 
density, z its height above J ,  then its mass is er  d a d r  dz, 
and the component of attraction required is-* being sup- 
posed constant 

where h is the height of the upper surface of M above J. 
Hence 

A = e (sin a'-sin a,) 

= g A  (sin a'-sin a,) l,# (+:;Z,t J 

= eA (sin a'- sin a,) log, 
- /+ 2- 

TI+ @TP' 
I n  exceptional cases only is i t  necessary to take into account 
hz, namely when the station is in the immediate vicinity of 
ve y steep ground, generally i t  may be neglected. I n  ordinary 
cases then the attraction due to M is 

?' CR (sin a' - sin a,) log, - t 
71 

or if the straight lines be so drawn that the sines of their 
azimuths are in arithmetic progression, having a common 
difference k, and the radii of the circles in geometric pro- 
gression, the logarithm (Napierian) of the common ratio being 
I, then the whole attraction to the north is 
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whew X (1) is the mum of the heighta of oompartment. north 
of the station, L (1') the wm of the heights of those south. 

Now if we regard the earth aa a qhere of radiae r and 
mess flit then the angular deflation of the direction of gravity 
D  d t i n g  from an attreotion A  is 

? D = - A .  
flit 

Taking t ss 3960 miles, and putting eo for the mean den- 
sity of the &h, D expressed in seconds is 

A  
0 = 12".44 -, 

go 
where i t  is supposed that the unit of length in the calculation 
of A  is the mile. 

I n  the case we have just been considering 

This method wae first adopted for the calculation of the 
attraction of Shiehallion in the celebrated experiment of 
Dr. Maskelyne for the determination of go. 

Here we have supposed that the calculation is not extended 
so far as to require any notice of the curvature of the earth's 
surface. I f  i t  is necessary to take this into consideration 
then i t  is easy to see that r being now angular distance, the 
component, in the direction of north, of the attraction of the 
mass standing in a compartment limited by azimuths a, a' 
and distances rl l /  is 

= (sin .'- sin .,) (log, + t f - ~ s  4 ? I )  . 
The attraction of an elevated table land whose upper surface 

is nearly a plane and its outline reatangular may be obtained 
thus. Taking the attracted point as origin of rectangular 
co-ordinates my in the horizontal plane and t vertical, let the 
solid be bounded by the planes 
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A being very small in comparison with the other dimensions 
a'-a, and 6. The a-component of the attraction is 

A =-,I"'/" a d x d y d z  
-a, 0 0 (2P+yl+z2)f' 

bx dm dz 

(as+a2) (2 '+6a+z2) ) '  

Now if we neglect the higher powers of g0 and put 
b = a, cot +, = a'cot $J' 

this becomes 

The  corresponding deflection is obtained by replacing ( by 
6"-22, if the attracting mass be of a density equal to half the 
mean density of the earth. 

If for example we suppose a table land extending twelve 
milea in length by eight miles in breadth, and having a 
height of 500 feet, then a t  an external point two miles per- 
pendicularly distant from the middle point of the longer side 
the deflection mould be 1''.47. In this case the term in h3 is 
not perceptible. 

The attraction of a prism of indefinite length whose section 
is a trapezoid HSS'II', at  
a point 0 in the plane of 
one of the faces SS', admits ....' . ,/H7M\ _. .. 

of a tolerably simple ex- ,./,'. ..- -'...-. 
pression horn which we 0.4.''. " S' 

may obtain an approxima- Pi. 58. 

tion to the deflection that 
would be caused by a rectilinear range of mountains of some- 
what regular section. Let 

aos=$J, a'OS=+' ,  
HSS' = o, H'S'S = o', 

OS= c, 0s' = c', 
OH= b, O F  = b'; 
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put further 
z a + ( c + Z c ~ t u ) ~ = ~ ' ,  z B + ( c ' - z ~ ~ t u ' ) 4 = ~ " .  

Then the limite being for y, 0 and ao ; for x, cl-z cot d 
and c + z cot u ; for z, 0 and R ,  we have 

xdx dy dz 
A = 2 e l J l ( , 2  +y2 + 

- - el/"@ = (/ ' log (f dz, 
x" + z2 

The integration presents no difficulty : the result is 
?dn2d  c d n e ~  # I h  

A = '10. { ( F )  . ( 1  - (T) 1 
+ 2e (~'4' sin4 u'-ct#~ sine u )  ; 

and if we replace p by 6".22, we get the deflection on the 
supposition that the monn- 
tains are of half the mean 

As density of the earth. 
Suppose the section to be 

s triangular ae 878'. From 
X I? 

the formula last written 
Fig. 59- down we a n  obtain the 

following expression for the deflection at  any point as P on 
the slope ST; drawing PQ, P X  parallel and perpendicular to 
the base, the deflection, call i t  v, is 

Suppoee for instance the height PU = half a mile, 8U = 
one mile, US'= two miles, then the deflections in seconds 
at  various points will be as shown in the following figure : 
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The maximum attraction finds place here at  about one- 
fourth of the height from the base. 

I t  is interesting to enquire into the amount of error that 
would be introduced by such attractions into the process of 
levelling over a chain of mountains. For instance, if spirit 
levelling is carried from S over P to S and again from S 
through an imaginary tunnel in a straight line from S to 8, 
what is the discrepancy produced by the attraction of the hill t 

between the two results obtained for the height of S? I n  
the operation of levelling, the observer has his instrument 
midway between two levelling staves, one in advance, the 
other behind. The difference of level is always given by 
2,-E, where R, is the reading of the back staff, 3 that 
of the front. But if there be a deflection of the amount 0 

-the at,traction being counted positive in the direction in 
which the leveller ie moving--and if d x  be the small hori- 
zontal distance between the stuves in any one position of the 
instrument, then the measured difference of height R, -E  
requires the correction vdx.  Let v' be the deflection at  any 
point of S f ,  then if I? be the height obtained at  S by the 
route SPiY and B' the height obtained by the direct route SS 

I?+ f vdx = R'+ f ddx, 

so that the difference between the heights obtained is 

In  the BatronmkcAcis NwhricAlen, No. 1916, pp. 314-31 8, 
is an investigation of the integral f v d x :  we may express 
the result thus, putting ST= a, PS'= 8, SS= a, the area 
of S Y f =  A, and omitting for a moment the coefficient 6O-22 



Again - f v'dx is the excess of the potential of the mass a t  S 
above its potential a t  5: this, see p. 94, is 

v'dx = 
2 A  

adding these together we have for the discrepancy H-R' 
of the levelling, thie expression 

to which we have to restore the coefficient 6".22. If we wish 
this small quantity expressed in feet, i t  must be still multi- 
plied by 5280 x sin I", or in other words, for 2 A  we must 
Write 0.31 8 A. 

Suppose for example that the height be one mile-, the base 
of the slope s one mile, that of the slope d three miles, then 
the error in the close of the levelling is 0.1 1 foot. 

Before concluding this subject, we may briefly notice the 
determination of the mean density of the earth from obser- 
vations of latitude made (in connection with the Ordnance 
Survey), at  three stations on Arthur's Seat, Edinburgh, in 
1865. One of the stations was on the northern slope of the 
hill, a t  a b u t  one-third of the altitude from tbe base; the 
second station was on the summit ; the third on the southern 
face of the hill, and a t  about the same height as the first. 
*om a total of 1260 observations of stara it was found that 
the difference of latitude (4) of the north station and the 
summit, and (a,) of the summit and south atation, were 
reepectively 

dl = 25".53 Ifi 0"-04, $ = 17"-00 k Or'.04, 
while according to the trigonometrical distances of the sta- 
tions the differences should be 

a,'= 24".27, ad= 14".19. 
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By the use of the formula (4) the following values were 
obtained for the deflections (northwards) at  the north station, 
the summit, and south stntion respectively 

- 5".237~,  - 2"-399 Z, + 2".700~,  

where z is the ratio of the mean density of the hill to that 
of the earth. Now there is reason to believe that there exists 
a general deflection to the south common to all these stations, 
let this be -$ ; then on equating the astronomical latitudes 
corrected. for attraction with the latitudes derived from the 
triangulation we have 

$ + b 1 - 5 . 2 3 7 2 + $  = $,+b,' 
$ - 2 . 3 9 9 ~ + $  = 4, 
+-&+ 2 . 7 0 0 ~ + $  = $ , -h i ,  

or putting r#~ + +-+, = 0 

~ - 5 . 2 3 7 ~ + 8 , - 6 , ' =  0 
0-2-3992  = 0 
IE+ 2-7O0z+b,'-b2 = 0 ,  

from which, on supplying the values of 8iI  a,', a,', we have 
a t  once z .  Finally the mean density of the hill having been 
found to be 2.75, that of the earth is consequently 5.3 16. 

An admirable essay by Bessel on the subject of this chapter 
will be found in the Astronomiache NacArkAten, No's. 329, 
330,  331, entitled Ueber den Ein$us8 dm ~%regelma88igkeiten 
der Egur der Erde, a v  geodatiache Arbeiten und ihre Per- 
gleichung mit den aatronomi8ccAen Bestimmungen. 



CHAPTER XIII. 

FIGURE OF THE EARTH. 

WE have seen how in comparing the surface of Great 
Britain with an ellipsoid of revolution there appear irregu- 
larities in that surfaca such as to produce apparent errors of 
several seconds in each and all of the observed latitudes: 
moreover we saw that the irregularities of the dist,ribution 
of masses of ground round t.he astronomical stations-though 
not in every case explaining the exact amount of error-is 
yet sufficient to account for errors of the magnitude of those 
brought to light in the comparisons of the mathematical 
surface with the most nearly agreeing ellipsoid of revolution. 
The probable error then of an observed latitude, m due to 
local disturbance of gravity is certainly not less than k 1".5, 
a quantity greatly exceeding the error that in any geodetic 
operations follows from errors of observation or measurement. 
We may then, dealing with these inevitable errors of latitude 
as purely accidental, treat them according to the method of 
least squares, and determine for the figure of the earth that 
ellipsoid or ellipsoid of revolution for which the sum of the 
squares of all the necessary corrections to the observed 
latitudes shall be a minimum. This method of regarding 
the problem seems first to have been, though only in a 
partial manner, carried out by Walbeck, afterwards more 
perfectly by Schmidt, and its full development is due to 
Bessel. 

1. 
We may here glance a t  some of the earlier results obtained 
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for the figure of the earth. Those of Laplace in the Me- 
canipe Celeste were very unsatisfactory owing to the very 
imperfect state of geodetic measures a t  that time. I n  Bow- 
ditch's notes to his translation of that work, vol. ii, page 453, 
we find the following expression for the length in feet of a 
meridian arc from the equator to latitude 4, 

8= 101.259564 4"-50209.2 sin 24-60-0 mn 4+, 

where 4'' is the latitude expressed in seconds. This curve is 
not restricted to the elliptic form: i t  is depressed below an 
ellipse described on the same axes, but the maximum de- 
pression b only 59 feet, in the latitude of 45". 

In the Enyckpedia Metropolitam, under the heading 
'Figure of the Earth,' is the elaborate investigation of the 
Astronomer Royal. If is based on the discussion of fourteen 
meridian arcs and four arcs of parallel. The resulting semi- 
axe8 are 

a = 20923713, c = 20853810, 
with, a : c = 299.33 : 298.33. 

Bessel's investigation made a few years after, viz. in 1841, 
is to be found in the Betronomiscde Nachrichten, Nos. 333, 438. 
He obtained 

a = 20923600, c = 20853656, 
with, ' a : c = 299.15 : 298.15. 

The agreement of these results of Airy and Bessel, obtained 
by very different methods of calculation, is very striking ; 
but we now know that, owing to the defectiveness of the 
then existing data, both are considerably in error. 

During the sixteen years following, great additions mere 
made to the data; the Russian arc was extended from 8" to 
25", the English from 3" to 1 lo, and the Indian arc extended 
54". An investigation, by Captain Clarke, R.E., based on 
these new arcs is to be found in the Accou?it of the Principal 
1Siangulntion of Great Britailt and Ireland. The data used in 
this investigation are : lst, the combined French and English 
arcs, 22" 9' ; 2nd, the Russian arc 25" 20' ; 3rd, the Indian 
arc 21" 21' ; 4th, an earlier Indian arc of 1" 35' ; 5th, Bessel's 
Prussian arc of 1" 30'; 6th, the Peruvian arc 3" 7'; 7th, the 
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Hanoverian an: 2' 1'; and 8th, the Danish arc lo 32'. The 
small arcs however have very little influence in the result. 

I n  this investigation the figure of the meridian is not 
reetricted to  the elliptic form. The radius of curvature is 
suppoeed to be expressed by the formula 

e = A+2Bcos 2$+2Ccos4$. (I)  
This represents an ellipse if 5 B2 - 6 8 C  = 0. The coodi- 

nates x, y, of the point Q, whose latitude is $, are 

a: = - J ~ s i n # d $  = (A-B)cos$+Q(B-C)coe3$ 
+ % C ~ 5 # ,  

y =  f e c o s + d $ = ( d + B ) s i n $ t Q ( B + C ) s i n 3 $  
+)Csin5$;  

whence follow at  once the semiaxes, 
a = A-fB-&C, c =  A+jB-&C. 

Let x', y' be the coordinates of a point P in latitude $ in  
an ellipse described on these same semiaxes: measure PS 
along the ellipse and SQ perpendicular to it, then 

PS = -(a-x') sin$+(y-3/) COB@, 
SQ= (a-d)cos$+(y-/)sin$; 

expreesing these by 6s and 6r, i t  may be shown that 

this last expressing the protuberance of the curve (1) above 
an ellipse described on the same axes. 

The distance of two points on the curve (1) whose latitudes 
are $-+a and $ + l a  is 

e =  Aa+2Bsinacoe2$+Cmn2acoe4$. 
Suppose now that each of the observed latitudes in the 

different ~ r c e  has a symbolical correction x attached, such as 
to bring them into harmony with the curve (1). Then A, B, C 
are determined so that Z (x2) is an absolute minimum. The 
resulting semiaxes are 

n = 20927197, c = 20855493, 
and a : c = 291.86 : 290.86. 
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The quantity 8r by which the curve is more protuberant 
than an ellipse on the same axes is (1 77 + 70) sinS 2 9. This 
is a eatisfactory indication that the actual curve differs but 
very slightly from the ellipse. But on restricting the curve 
to an ellipse, the ssme data give 

a = 20926348, c = 20855233, 
and a : c = 294.26 : 293.26. 

But these conclusions were vitiated by the then existing 
uncertainty as to the unit of length on which the southern 
half of the Indian arc depended-an uncertainty which is 
now removed by the recent remeasurement of the arc from 
Damargida to Punnae. 

In  the dlemoira of t k  R. A. Society, vol. xxk, is an in- 
vestigation of the figure of the earth regarded as a poseible 
ellipsoid, suggested by General T. F. de Schubert's ' Essai 
Bum ddtemination de la editable Figure de Ja Tme.' I n  this 
enquiry one has first of all to define parallels and meridians ; 
the colatitude of a point, being still the angle made by the 
normal to the surface there with the axis of rotation. A 
meridian may be defined either as the locus of points, whose 
zeniths lie in a great circle of the heavens, whose poles are in 
the equator or at  which the normals are perpendicular to a 
fired line in the plane of the equator--or we may define the 
meridian as a line whose direction is north and south. But 
these lines as we shall see are of different characters, and we 
shall call this last a north line. 

If a, b be the semiaxes of the equator of which we shall 
suppose a to be the greater, c the polar semiaxis, the equation 
of the surface is 

The direction cosines of the normal at  LC, y, s being pro- 
portional to 
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if + be the latitude of pointe on a parallel it is easy to see that 

Again, for s meridian, if the normals are to be perpendicular 
to the line whose direction cosines are proportional to 

-sinw:cosw:o, 

we must have for the equation of a meridian 

0 .  Y -- s m o  + - cosw = 0 ;  
aa P 

the positive extremity of the semiaxis a being in longitude 0. 
From the three equations (2), (3), (4), if we put 

we get 
k cosw x=-.- 

~4 I-i' 

k sin o 
Y=-'- N+ I + ; '  

Let us now consider the north line. Suppose that a point 
on the surface of the ellipsoid moves always towards a given 
fixeil point d!/'d, and let i t  be required to determine the 
nature of the curve traced by this moving point. Two con- 
secntive pointa on the curve having coordinates xyz, 0+ dx, 
y + dy, z + dz  give the condition 

The equation of a plane passing through xyz and x'y'k is 

A (id-a)+ B ( / m y )  + C (d-Z) = 0.  

This plane is to contain the normal at  ayz  and the point 
x +do, y + dy, a + d z, which conditions give two other equa- 
tions in ABC: and eliminating these symbols me have the 
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differential equation of the required curve expressed by the 
determinant 

the north line is a particular csse of this general curve, viz. 
when d = 0, y' = 0, d = co : its equation is 

aa ydx-b4 xdy = 0, (7) 
of which the integral is x@ = Cyw. It is therefore a line of 
' greateat slope ' wit,h respect to the equator. 

Let S be any point on the surface of the ellipsoid, say in 
that octant where x y z  are all positive. Let SN, SM, SP 
be indefinitely. small portions of the north line, meridian line, 
and parallel   as sing through S: and let i t  be required to find 
the angles these lines make witth one another. If from (6) 

, 

and (7) we determine the ratios 

d z : d y : d z ,  
we find them to be as 

a= ya 8% xa 
-Pxz  : -a2yz : 8 (3r + 9 

and these are proportional to the direction cosines of SN. So 
also on differentiating the equation (4) of the meridian we 
find the ratios dx : dy  : dz  to be expressed by 

-a2z cos w : - P z  s ino  : c2(x coso+y sino), 

and these are proportional to the direction cosines of SN. 
Again, differentiating the equation (3) of the parallel we 

find for the ratios d t  : dy : dz 

which are proportional to the direction cosines of SP. 
From these ratios we have no difficulty in finding the re- 

quired angles. Supposing i to be a very small quantity, 
whose square is to be neglected, the coordinates x, y,  z are 
proportional to 

P 
( l+k)coso: ( l - i ) s inw:- tan$,  

k'l 

x a 
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by the substitution of these in the foregoing ratios we obtain 
finally 

x ie2 sin @ sin 2 0  
N S P = , - i s i n + s i n 2 w -  

@ sin1 c p + ~  cos8+' (8) 

Thus for instance, if there be a difference of a mile between 
a and b, the angle between a meridian and parallel at  a point 
in longitude 4S0, and latitude + will be less than a right 
angle by about 105" sin +. So large an angle as this should 
be detected by first rate geodetic operations though i t  would 
require a somewhat long measurement of meridian and 
parallel. 

In an ellipsoidal earth the directions of the principal cnr- 
vatnres of the surface no longer coincide with meridians, 
parallels, or north lines. Supposing S is not in a very high 
latitude, one of the lines of curvature as SR through S will be 
somewhere in the direction of SP, and i t  may be shown 
that the angle 

which however does not hold good in high latitudes : for in 
the vicinity of the umbilics the lines of curvature are ap- 
proximately confocal conics having the umbilics as foci. 

The results of the calculation referred to in vol. xxix. of the 
M. R. A. 8.  ae subsequently corrected for errors in comparisons 
of standards stand thus : 

Major semiaxis of Equator (long. 15" 34'E.) a = 20926350 ; 
Minor semiaxis ,, (long. 74" 26' W.) b = 20919972 ; 
Polar semiaxis ,, c = 20853429. 

But these are affected by the error in the southern half of 
the old Indian arc. A revision of this calculation based on 
the revision and extension of the Indian geodetic operations 
is to be found in the Piriloaophical Magazine for August 1878, 
resulting in the following numbers : 

Major semiaxis of Equator (long. 8" 15' W.) a = 20926629 ; 
Minor semiaxis ,, (long. 81" 45' E.) I = 209251 0 5  ; 
Polar semiaxis ,, c = 20854477. 
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The meridian of the greater equatorial diameter thus passes 
through Ireland and Portugal, cutting off a small bit of the 
north-west corner of Africa : in the opposite hemisphere this 
meridian cuts off the north-east corner of Asia and p ~ a ~ e s  
through the southern island of New Zealand. The meridian 
containing the smaller diameter of the equator passes through 
Ceylon on the one side of the earth and bisects North America 
on the other. This position of the axes, brought out by a 
very lengthened calculation, certainly corresponds very re- 
markably with the physical features of the globe-the dis- 
tribution of land and water on its surface. On the ellipsoidal 
theory of the earth's figure, small as is the difference between 
the two diameters of the equator, the Indian longitudes are 
much better represented than by a surface of revolution. But 
it is nevertheless necessary to guard against an impression 
that the figure of the equator is thus definitely fixed, for the 
available data are far too slender to warrant such a con- 
clusion. 

For the reduction of arcs of longitude in this enquiry we 
must form the expression for the length of an arc of parallel 
between given longitudes. By differentiating (5) we get 

k sin o 1 cS - 
N$ I-i  

d y =  -.- - 
c2 N3 l + i  1 - i + 3  

tan1 0) do, 

the square root of the sum of the squares of these is, ueg- 
lecting i2, 

which integrated between the limits o, and o' gives 

But we return now to the ellipsoid of revolution. 
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What we obtain by the linear measure of a few degrees 
of the meridian and the observation of the latitudes at  the 
terminal points of the measure, is in reality nothing more 
than a value of the radius of curvature of the meridian at 
the middle point of the arc. I f  e be the length, + the middle 
latitude, and a the difference of the extreme latitudefi, then 
excluding quantities of the order n4 in (1 7), page 11 1 

Or putting r for e : a, which is the radius of curvature, 

I f  we have another arc, giving in latitude +' the radius of 
curvature f ,  

and from these two a and c can be determined. But to do so 
effectually, the coe5cieuts of a and c in the two equations 
must not be nearly the same, that is the arcs must be situated 
in quite different latitudes. There are in particular two points 
in the meridian giving special results: a t  one of these the 
radius of curvature is a, viz. when 

and at  the other where 

the radius of curvature is c. So that arcs measured in these 
latitudes give a and c directly and separately. The English 
arc is in the position to give a, while the French arc whose 
mid-latitude is 45' gives f a  + f c. Tbe individual influence of 
the existing arcs in the determinations of a and c may be 
seen-using only round numbers-from the following calcu- 
lation. Let the northern loo of the Russian arc between 70" 
and 60' give a radius of curvature r , :  let the English arc 
between 60" and 50" give r2; the French arc 50" to 40° 
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giving rS, and the ten southern degrees of the Indian arc 
giving r4, then we get these equations : 

; a - 1  c-rl= 0, 
a -r2 = 0, 

f a+ f c-r, = o, 
-)+a +)f C-T, = 0; 

the solution of which by least squares is 
a = +.3961r1+.3189r,+.2417rs+~0432r4, 
c = +so688 r, + ,1645 r,+ -2602 rs+ -5064 r4. 

We see hew the great influence the southern part of.the 
Indian arc has in determining c, while it has little or none in 
determining a. 

Or more precisely-suppose each arc to have six astro- 
nomical stations, equidistant, 5' apart in the Russian, and 4" 
apart in the combined English and French arc ; also 4" apart 
in the Indian arc; and let these arce be combined by the 
method of least squares to determine the figure of the earth. 
Let 8, . . .8, be the latitudes of the statione in the Russian arc 
numbered from north to south ; tp, . . . +, those of the Anglo- 
French ; .. . JI, those of the Indian. Then if d 8 . . . , 6 + . . . , 
d$ . .. , represent any increments to the observed latitudes, 
expressed in seconds, the alterations in feet that would follow 
in a or c are these: 

- 117.6 18, - 26.5 ae, - 76.2 a+] -39.6 a+] - 5.4 a+, -I a+] 
- 637 88, -23.0 18, -40.7 arp, -28.9 a+, +0.3 ap, - ah 
- 145 181 -14.5 ah - 8.8 a+, -14.6 a+, +3.0 ap, - 26.7 apI 
+ 29.3 68, - 0.6 88, + 19.1 89, + 3.9 a+, + 3.2 ap, + 20.3 a+, 
+ 67.3 68, + 19.3 1% +43.2 ag, + 26.j ah + 1.2 + 69.5 a$, 
+ 99.3 88, + 45.4 88, + 63.4 a+* + 52.8 6+1 - 2.3 a#, + I 20.3 a+, 

4. 
The meridian distance e of two points in latitudes $,, $' is, as 
we have wen, page 1 11, expressed by the equation 

8 
- - ( l + n + f ~ ~ 2 ) a + ( 3 n + 3 n 2 ) a 1 - 1 ~ ~ 2 a 2 = 0 ,  (9) 
C 
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in which 
a = +'-$I, 

a1 = as in  2+'-4Bin2q,, ,  
= 4 sin 44'-4 sin 4$,. 

Suppoee however that c, n, cpt, +' are only approximate 
values requiring the corrections 8 c, an, 8 +,, 8 +' ; then if F be 
the left hand side of ( 9 )  that equation becornea 

whicb, if we neglect the small terms ne 6 4 ,  na 8 4' is 

+ {1+n-3n  ~ o s 2 + ~ )  a + , - ( 1  +n-3n  cos2+'} d+'. 
Let the coefficients here of 8+, ,  8+' be b e ,  I*', and write the 

equation thus 

Let the approximate values be those of a spheroid El 
c = 20855500,  71 = .av, (EJ 

and let 
8c u - - -- 
c 10000' 

8 n  -- 10 v sin 1". 

Moreover, if the corrections a+, , 8+' expreesed in seconds 
be x t ,  x', and if we put 

- 15naa ,  
8 4  sin 1"' 

8 
a =  - 

10000 cI*' sin 1"' 

then 

c =  &. 
I*' ' 
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expresses the relation that must exist between corrections x,, 
x', applied to the observed latitudes in an arc so that that arc 
shall belong to the ellipsoid of revolution E, whose elements 
are 

11 
c = 20855500 (1 + -) J n = &,+ 1On sin 1". (2) 10000 

Here the case is supposed of merely the two terminal lati- 
tudes being observed. But if there be any number n of 
observed latitudes in the arc, then the correction to the 
southern terminal latitude being x, each of the corrections to 
the remaining .nr- 1 stations miil be of the form 

Suppose then that we have several measured arcs of meri- 
dian, in each of which are several observed latitudes: then 
the wm of the squares of the corrections to all the latitudes 
necessary to bring t,hem into harmony with the ellipsoid 
(h') is 

and so on ; where x,, x2 are the corrections to the southern 
terminal observed latitudes of the first and second arcs. And 
i t  is nssumed that that ellipsoid of revolution most nearly 
represents the figure of the earth which renders the sum U an 
absolute minimum. Thus u, v, xl a,, . .. are derived from 
the equations : 

dU - = 0, 
dU - = 0, 

d u  d v  

and so on. This resolvee itself into equating the several 
symbolical corrections to zero and solving the equations by 
the method of least squares. 



FIQUBE OF THE EARTH. 

It ie supposed in the preceding paragraph that the data 
consist in meridian arcs only-but they are not now so limited. 
I n  the Indian longitudes we have a most valuable addition to 
the meawremente on which the calculation of the figure of 
the earth ie to depend. 

Of the precision attained in these electro-telegraphic deter- 
minations we have a & means of forming an estimate by a 
consideration of the corrections calculated at  pages 2 14, 215. 
On the whole i t  may be admitted that they are little inferior 
in weight to latitude determinations when we take into 
account the accidental effect of local attraction to which all 
are liable. We shall therefore form expression8 for the 
easterly deflection at  each of the longitude stations, and 
include in the U of the preceding paragraph the sum of the 
squares of these deflections. 

I n  the fifth column of the following table are given the 
differences of longitude-as determined by electro-telegraphy 
and corrected as at  page 21 4 for internal discrepancies-with 
reference to Bellary ae a central point. The second column 
contains the latitudes, the third and fourth the quantities 
$, 8, used in the same sense as at  page 267 : the last column 
contains the longitudes as calculated with the elements of 
Everest's spheroid E-in which 

n = -00166499, c = 20853284, 

from the triangulation connecting the several stations with 
. 

Bellary. The latitude of Bellary is r#~ = 16" 8' 33":- 

STATION. 

V i p a t r m  
Hydmbad ... 
Bombay ... 
Mangalore 
Bangdore ... 1 m . 

+' 

I 

17 41 a2 
173014 
18 53 49 
ra  5a 14 

I j o 41 
13 4 4 

# 

-- 
O I H  

17 40 a6 
172912 
18 51 a8 

1 2  53 5 
13 I ag 
13 4 5 1  

' 
0 ,  

6 36 
a48 
5 15 
j a 
a rq 
316 

OB~ERVXD 
L o a a ~ ~ m ~ .  

0 ,  L 

6 a1 35-44 
135~8.19 

-4 6 44.00 
-a 4 5241 
o 39 10.62 
31) 8.26 

I 

' SECONDS 1 
OF 1 

Gmn. ( 

31.53 
50.74 
56.79 

,*.go 
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Let a be the distance of one of these stations from Bellary, 
then by (5), page 270, 

where a is the azimuth. Hence, neglecting a term in nos tieJ 

which is the alteration of 8 corresponding to very small 
alterations of c and n. If 80  be the corresponding variation 
in the calculated longitude, then, see page 277, equations (13) 

sin d 80 cos$sino. a. = - ---- 68 = - . 
cos JI s m e  W J I  ' 

substituting in this last the above expression for 68, and re- 
placing the variations 6c, 6% by their equivalents in u, v, we 
get a result of the form 

8o = Aw+Bv, 

where the values of A and B can be at once written down 
and calculated numerically for each station in the above table. 
If in the spheroid E me replace r, v by 

that spheroid becomes I?. If 0, be the longitude of one of 
the stations in the table calculated from the triangulation on 
the spheroid E,, o' its longitude as referred to E'; o the same 
as referred to E, then 

o -o, = Au +Bv, 
d-o, = A d +  Bd,  

o = d +A(u-u')+B(v-d). 

Omitting degrees and minutes, me obtain the following 
results for the longitudes of the six stations on the spheroid E : 
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Suppose that at  Bellary there is a deflection y to the east 
while that a t  one of the other stations ie 3': the geodetic 
longit,ude of this other station being Q + Bu + Bv on E and 
its observed longitude Q', 

SL'+/sec+'-y set+ = Q + A u + B v .  

Thus y' is expressed in tenns of y by an equation 

y'= m+au+bv+cy. 

The sum of the squares of the y's at  the seven longitude 
stations is then to be added to the U of the last paragraph, 
and they  treated as one of the x's. 

We shall now write down the corrections x to the observed 
latitudes of the stations in the meridian arcs, pages 32-36, 
and the y's for the Indian longitude stations : 

Saxaford ... 
... North Rona 

Great Stirling 
... Kellie Law 

Durh am... ... 
CliRon ...... 
Arbury . . . . . .  
Greenwich ... 
Dunkirk ... 
Dunnose ... 
Pantheon ... 
Carcossonne ... 
Barcelona ... 
Montjoug ... 
Fomenters ... 

Fuglenaea ...... + 2.779 
Stuor.oivi ...... + 1.260 
Torn ee... ...... + 6.518 
Kilpi-maki ...... + 1.297 

. . . . . .  Hoglrrnd + 2.1 I 7 
. . . . . . . . .  Dorpat + I -060 

Jacob~tsdt . . . . . .  + 4.807 
Nemeach . . . . . .  + 1.371 
Belii . . . . . . . . .  + 2.768 
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. . . . . .  Kremenetz +0.499 -1.7140 u - 1.0583 v + O  9992 ZI 
... b%upmnkowzi +5.377 -1.130l U - 0.7175 V +0.9994 Xz 

...... Wodolui + 4008 -0.6085 u - 0.3282 v + 0,9997 x, 
S m  Nekrassowka + 0.000 - ooooo u - o a ~ ~ o  v + I -0ooo X, 

Shahpar ... 
Khimnana ... 
Kaliana ... 
Garinda ... 
Khmor ... 
Kxlianyur ... 
Fikri . . . . . .  
Walwari ... 
Dsrmrrgida ... 
Damr . . . . . .  
Honur . . . . . .  
Bangalore ... 
Patchapaliam 
Kudankulam 

Cape Point . . . . . .  -0.325 - 1.6602 14 + 0.2558 v +0.9993 x, 
Zwart Kop . . . . . .  +0.833 -1.6150 u + 0.2535 v +09993 s, 
Royal Obeervatory -0.755 - 1.5099 u + 0.2470 v + 0.9993 z, 
Heerenlogement ... + 0.304 -0.8030 u + 0.1671 v +egg96 X, 

...... North End + o.wo -o.oooo u + o.oooo v + I .WOO x, 

Let each of the corrections be now equated to zero and the 
whole treated by the method of least squares. After elimina- - 
ting the y and the x's the remaining equations are 

the solution of which gives 
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The values of the correct'ions to the observed latitudes are 

as in the following table :- 

The sum of the squares of t.he corrections being 2 85.7 6 3 .... 
the probable error of a single latitude is 

Moreover. if me write A. B for the absolute terms of the 

COBBE~ION . 
.. 

- 3.550 
+o.r41 
+3.652 
- 1.904 

+I993  - 1.392 
- 2.949 
++532 

. + I 240 
+4.36a 
-3.684 

+ a . p 3  
- 2.204 
-3.138 

+ 0.649 
+ 2.1a1 
-4050 
- 2.924 
- 0.303 
+ 4499 
-0 050 

-0.161 
+ 0.983 
-0.637 
+ 0.198 
-0.380 

+ 0.586 
-0.585 

STATION . 

Shahpur . . . . . .  
Khimnsua ...... 
Knlinnn . . 
Garinda ...... 
Khamor . . . . . .  
Kalianpur . . . . . .  
Fikri . . . . . . . . .  
Walwari . . . . . .  

...... Damargids 
Damr . . . . . . . . .  

. . . . . . . .  Honur 
b q a l o r e  ...... 
Patchpdiam ... 
~ ~ d a n k h  ... 
vizagapntam ... 
Hydrabad . . . . . .  
Bombay ...... 
Mangalore ...... 
Bangalow . . . . . .  
Madran ...... 

. . . . . .  

Cape Poi:rt . . . . . .  
...... Zwart Kop 

Royal O h e m t o y  
Heerenlogement ... 
North End . . . . . .  

Cotcheaqui . . . . . .  
Tarqui . . . . . . . . .  

STATION . 

Sexaford . . . . . .  
... North Rona 

Great Stirling ... 
Kellie Law ...... 
Durham . . . . . .  
Clifton . . . . . . . . .  
Arbury . . . . . .  
Greenwich ...... 
Dunkirk . . . . . .  
Dunnone ...... 

. . . . . .  Pantheon 
Crucaeaone . . . . . .  
Barcelona . . . . . .  

. . . . . .  Montjouy 
Formentera . . . . . .  

Fugle- . . . . . .  
Stuoroivi . . . . . .  
Torn ea . . . . . . . . .  
Kilpi.maki . . . . . .  
Hogland . . . . . .  
Dorpat ......... 
Jacobstadt ...... 
Nemeach . . . . . .  

. . . . . . . . .  Belm 
Kremenetz . . . . . .  
Ssoprunkowzi ... 

. . . . . .  Wodolui 
St- Nekramwka 

C O B B ~ I O N  . 

+ 1.453 
+o.o81 
-0.710 
- I -089 
-1.453 
- 2.486 
+ 1.180 
+ 0.778 

. - I 25 1 

-1.691 
-2.617 
-1.228 

+0.573 
+3.927 
+ 4.524 

+ o o q  
-1.423 

+ 3.911 
-1.058 
-0.422 
-1.483 
+ 2.247 
-0.a21 
+0.108 
- 2.132 
+ 1.588 
+ 1.133 
- 2.973 
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last written equations (12) they may be put in the form 
0 = ~+.0043667 8--0025030 B, 
0 = V--0025030 A+.OO59508 B, 

so that the probable error of a r  + p a  is 

k 1.645 (-004367 a2-.005006 a p  +-005951 /I2)). 
Now c involves 2085u, and a involves 2085r+2022v;  

hence their probable errors are respectively + 227 and k 245 
feet. Moreover, for the number representing what is called 
the ellipticity, since i t  involves 8-44 v 

a - c  - 1 
2 ---- - 

a + e  292.96+1.07' 

Finally-the values of a and c are these 

a = 20926202, 
c = 20854896, 

and their ratio 
c : a = 292.466 : 293.466. 

7. 
An examination of the corrections to the observed latitudes 

in the table given above, does not lead us to suppose that any 
of the arcs are badly represented by the spheroid just deter- 
mined, that ie to say, they appear to conform well to the . 

mean figure. But to enquire more particularly i n t o  this point: 
suppose that for one of the arcs taken by itself only, we 
calculate that curve, QE', either elliptic or of the more general 
character 

c = A'+2B'cos2@+2C'cos4@, d 
which best represents that arc. Then by least squares me 
get A', 3, C', and also a certain correction 6' to be added to 
the observed latitude @o of the southern point 5. Then the 
normal at  that point of & which corresponds to S is inclined 
to the equator at  the angle @,+Q. The coordinates of a 
point of d in latitude t$ are 

a' = (A'-B') cost$++ (3-C')cos 3t$+)C'cos 5@+H,  
y'= (A'+B')sin+++(B'+C') sin3@+)C'sinti++K, 
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swing 0°.6, this error would be very much less than a hun- 
dredth of a vibration per diem. 

For a senonds pendulum the correction corresponding to 
a supposed uniform excursion of 48' on either side of the 
vertical, is one vibration per diem, or more accurately 

The equation of motion of a rigid body oscillating about 
a horizontal axis-in a vacuum-under the influence of 
gravity is 

n (h2 + k2) e;)' - 2  ng A  cos u = C, 

where m is the maas of the body, m P  its moment of inertia 
round an axis through its centre of gravity G parallel to  the 
axis of rotation, A  the distance of G from the axis of rotation, 
and u the angle made by the plane passing through that axis 
and G with the vertical, so that when the body hangs st 
rest u = 0. If the body swings in air, and if vn' be the mass 
of the air displaced by the pendulum, and A' the distauce 
from the axis of the centre of gravity of the volume or figure 
of the pendulum, then in the above formula mh must be re- 
placed hy vnh-m'V. If a t  the same time, h being the length 
of the simple pendulum oscillating once in a second at the 
place of observation, we replace g by a2h, the equation be- 
corn es 

m' 
( h 2 + k 2 )  ( Z f - 2 r 2 *  ( A -  A ' )  ?a cosu = C. 

If the pendulum be homogeneous, Y = A. This equation 
Ilowever is still only approximately true. The Chevalier Dn 
Buat in his P r i n c i p  d'liydraulique published in 1786, showed 
from numerous experiments that when a solid body moves in 
a fluid, a quantity of the fluid is dragged along with i t :  a 
phenomenon confirmed by the practical and theoretical in- 
vestigations of Bessel in his admirable work on the pendulum 
U~tereudungen uber die Gnge de8 einfacien Secundenpendela, 
von F. W. Bessel, Berlin, 1828. He proves that the fluid in 
which a pendulum oscillates-being supposed of very small 
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density-lias no other influence on t.he time of a small os- 
cillation than that i t  increases the moment of inertia of the 
pendulum and diminishes the force of gravity. The above 
written equation must in k t  be replaced by 

where K is a constant depending on the external form of the 
pendulum-which is supposed in all cases to be symmetrical 
wit.h respect to a plane through G and the axis of rotation. 
Hence i t  follows that the movement of the pendulum is the 
same as that of a simple pendulum of the length 

m' 
Ae+ke + - K 

m 

I = d d ' .  A-- 
( 5 )  

m 

If for K we put K (A2 + P), and if the pendulum be homo- 
geneous, the time of an oscillation is 

The constant K has to be determined from experiment. 
For this purpose Bessel swung a pendulum formed of a sphere 
of brass suspended by a fine wire, first in water and again in 
air, and determined the times of vibration. Let 4 ,  t2 be 
these times, the densities of the sphere, the water, and the 
air being represented by 1 : 8, : 8,. Then by (6) 

AA 42 (1 - 8,) = (k2 t A') (1  i - 8 1 ~ ) ~  
n~t:( l -a , )  = ( P + A 2 ) ( 1  t b,~), 

whence 

This experiment gave 1 + K = 1-65 ; and varying the experi- 
ment by using a brass cylinder instead of a sphere, 1-75 was 
obtained. Again, he swung in air two apheres of the same 
diameter, 2 inches, but very different specific gravities, viz. 



brass and ivory, and the comparison of the times of vibration 
gave 1 + K = 1-95 : to this result he gave the preference. 

The volume of the Pliihoplical  Traneactione for 1832 con- 
tains a very valuable memoir by Mr. Baily on the experi- 
mental determinations of this constant, his experiments 
extending over eighty pendulums of various descriptions. 

The circumstance that a pendulum of the form of Kater's 
convertible pendulum is differently affected by the air ac- 
cording as the weight is above or below, led to the form of 
pendulum known as Repsold's, in which the two ends are 
exactly similar externally, but the cylindrical weight at  one 
end is hollow. The centre of gravity of the figure, cor- 
responding with the middle point of its length, is equidistant 
from the knife-edges, but the true centre of gravity of the 
mass is a different point. Let its distances from the knife- 
edges be A,, h,, and the corresponding times of an oscillation 
I , ,  $. I n  this case K is the same for both positions of the 
pendulum, and 8' is in either position 4 (1, + A,). The formula 
(5) becomes in this case 

m' 
4:+kP + - K 

m 
A l l 2  = m" 

41- t (h-kh,) ; 

Here m" is not necessarily equal to m!, except the height of 
the barometer be the same in the two sets of experiments. 
If however the observations be eo arranged that the at- 
mospheric pressure is the same when the pendulum swings 
on the one knife-edge as when i t  swings on the other, then 
when ka is eliminated from the above equations, K also dis- 
appears, and we have this result 

The pendulums are so formed that tl and t2 are almost I 
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identical ; in this case the square of t,-l, is to be neglected, 
and 

I n  the treatise on the figure of the earth by Sir 0. B. Airy, 
in the Encyclopedia Metropolitona, mill be found a valuable 
historical account of the various expeditions undertaken at  
different times for the purpose of measuring the relative 
intensities of gravity in various latitudes. The Philoeaqlical 
Dnmactions for 182 1-23 contain accounts of the observations 
of Captain Hall a t  London, Rw Janeiro, Galnpagoa, and Sun 
Blas in California, of Sir Thomas Brisbane at Paratnatta, and 
of Ooldingham at  Madras. The invariable pendulum sent 
out to Madras was previously swung in London by Captain 
Krrter on five days ; t.he Madraa observations extend over 
f i h n  days : they form a connecting link between the recent 
Indian series and London. 

Passing over the voyages of the French exporimenters, 
Freycinet (1 8 17-1 820) and Duperrey (1 822-1 825), and also 
the Russian expedition (1826-29) under Lutke, we find in 
the volume entitled 8% Account of experiment8 to determine the 
Fyure of tle &rth by means of the pendulum vibrating seconds 
in dz~erent lalilwlee, London, 1825, an extensive series of 
observations by Sir Edward Sabine made with the invariable 
pendulum at  I;ondon, S k a  Leone, St. Thomaa, Ascension, 
Balia, Maranlam, Tinidad, Jamniea, New Ymk, Hammerfeeat, 
Spitzbergm, Greenland, and Dro~itheim. At each stat'ion from 
eight to twelve or fourteen swings were observed with each of 
two pendulums ; each swing, extending over about two hours, 
embraced eleven coincidences, of which the first and last were 
recorded. A comparison at  each station of the results afforded 
by the two pendulums givee a measure of the accuracy of the 
work; i t  thus appears that the probable error of the final 
result a t  any station by either pendulum is f 0.11 vibration, 
or taking as the result the mean of the vibrations of the two 
pendulums, its probable error is k 0.07 ; a quantity surprisingly 
small, especially when we consider the very slender instru- 
mental means adopted for the determination of the clock 



error. I n  addition to  these pendulums, two others of the 
'invariable' pattern attached to the machinery of a clock 
were observed a t  eleven of the stations. I n  this method the 
observations are much simplified as the clock itself records 
the number of  oscillation^ made per diem. l'his series was 
undertaken as an experimental enquiry into the question 
whether pendulums kept in motion by a driving weight could 
be trusted for the purpose of measuring the relative force of 
gravity a t  different places. The results certainly appeared 
satisfactory; the attached pendulums agreeing inter ee as 
closely as did the detached : if llowever we compare the mean 
of the two attached with the mean of the two detached, a t  
all stations, the agreement is not quite so close. 

The reduction of Captain Foster's observations by Baily is 
given in detail in vol. vii. of the Memoirs of fh R g a l  dstro- 
nomicnl SocieLy. Captniu Foster took with him two brass 
pendulums of the invariable pattern, and two others of a 
slightly different form, viz. a plain straight bar (one of copper, 
the other of iron) fitted with two knife-edges a t  different 
distances from the centre of gravity. The stations visited 
were London, Greenwich, Nonte Pideo, Staten Island, South 
Shetland, Cape Horn, Cape of Good Zope, St. Helena, Asce~zsion, 
Fernando de Noronha, Maranham, Para, Trinidad, and Porto 
Bello. The observations are very numerous-the total amount 
of time occupied by the swings being 27 10 hours. I n  each 
swing, lasting 2f or 3 hours, the first three coincidences and 
the last three were observed. 

A t  Ascension one of the pendulums was swung on the top 
of Green Mountain, 2230 feet high. Here the number of 
vibrations was 85878.96, whereas the number with the same 
pendulum a t  the principal station, which was only 15 feet 
above the sea, was 85887.44 (reduced to the sea level). Ap- 
plying Bouguer's correction (3) for height to the former 
result, and leaving the densities of the hill and of the earth 
symbolical, and then equating the so corrected vibration 
number to 85887.44, we get 6-87 ?I = 0.68 A, a result which 
would imply, as in Bouguer's experiment, that the density of 
the hill was extremely small. 

Vol. xxxk. of Nem. R. A. Soc. contains a summary of a 
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series of experiments made with t\vo of Repsold's Reversible 
Pendulums by Professor Sawitsch for the determination of the 
variation of gravity in Western Russia. Repsold's pendulums 
are in external appearance the same a t  both ends, symmetrical 
in fact, with respect to a perpendicular plane through the 
centre of the figure-but one bob being empty, the centre of 
gravity is not a t  the centre of figure. They swing on a 
portable tripod stand, and are provided with the means of 
making a vepy precise measurement of the distance between 
the knife-edges. When under observation the pendulum is 
covered with R glass case. The instrument is fully described 
in a Memoir by Professor Plantamour, Expkriencesfaites a 
Gentbe acec le pendule a rkrersion, Genhve et Bale, 1 8 66. We 
have already shown the advantage of this form of pendulum 
in the almost entire elimination of the atmospheric influence. 

M. Sawitsch's observations were made a t  twelve places, using 
the pendulum simply as an invariable pendulum. When the 
length of the seconds pendulum has to  be determined a trans- 
position of the knife-edges (which ale removeable) is necessary. 
This was only done a t  one p i n t ,  St. Petersburg. A some- 
what serious defect in the apparatus is that the stand is put 
into vibration by the pendulum and thus a correction becomes 
necessary. This phenomenon has been very carefully investi- 
gated, both mathematically and practically, by Mr. Pierce of 
-the U. S. C. Survey, and by MM. Cellerier and Plantamour. 
W e  find M. Sawitsch's results corrected accordingly in vol. 
xliv, Hem. R. A. Soc., page 307. 

The most extensive series of pendulum observations ever 
effected is that just brought to a close in India in connection 
with the Great Trigonometrical Survey of that country under 
General Walker. The observations were made by Captain 
Basevi, R.E., a t  twenty-seven stations, between 8'9' and 33' 16' 
latitudes, his last station, Mord, being a t  an altitude of 15427 
feet. The series was completed by Captaiu Heaviside, R.E., 
who observed a t  Bombay, Aden, Ismailia in Egypt, and finally 
a t  Kern Observatory. The pendulums, of which there were 
two, were swung a t  Kew before their transmission to India, 
1~0th a t  an ordinary atmospheric pressure and in a vacuum 
apparatus a t  a pressure of one or two inches : they were also 

z 
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swung a t  a high temperature and at  a low temperature. 
From these observations i t  resulted that the number of 
oscillations made per diem required the correction 

where t is the temperature Fahrenheit and /iI the height of 
the barometer in inches, in mder to reduce them to the 
number that would have been made at 62' and in a vacuum. 

The pendulums were, in the Indian operations, swung in a 
vacuum chamber, a t  the recommendation of the President of 
the Royal Society. Each swing lasted, or rather was ob- 
served, for about nine houm-at two stations they extended to 
twenty-three hours. At  the cemmencement and end of each 
swing three consecutive coincidences were observed, and also 
intermediate coincidences at  intervals of an hour and a half. 
Thermemeters inside the reeeiver were also read a t  these 
times. Conducting the swings in a vacuum thus greatly in- 
creased the labour of the observer with but little corresponding 
advantage : for the object in view being the determination of 
the variations of gravity, the referenee to  a vacuum was in 
fact unimportant. 

The change of temperaturegenerally an increase, seldom 
a decrease-during a swing, not unfrequently amounted to 
10" Fahr. : instances of much larger variation8 occur, es- 
pecially a t  MOT&. The lowest mean temperature of the whole 
of the ciwings at  any station was MO, the highest 92'. l'he 
importance therefore of a very accurate knowledge of the 
temperature coefficient is evident, especially when we r e h t  
that in determining the figure of the earth from pendulum 
observations the result obtained is dependent principally on the 
observations near the equator and on those farthest from i t  
those places in fact a t  which the correction for temperature is 
largest end most uncertain. The Indian observations include 
therefore a very elaborate determination of the temperature 
coefficientan investigation of much difficulty. 

By a comparison at each station of the results given by the 
two pendulums, a measure of the probal~le error of the final 
res111t is obtained, viz. that the probable error of the mean of 



the vibration numbers of the two at  any station is k 0.1 1 
oscillation. 

Of the Indian pendulum stations, eleven exceed 1600 feet 
in height, Mussoorie is 6920, and More upwarda of 15000. 
At these great elevations the reduction of the observlrtions to 
the level of the sea becomes somewhat uncertain. Referring 
to page 81, if we drop the accents there affixed to e and e, and 
for a moment write p8 for 4 -p2, then 9 = 

If here we put r  = c(1 +pPe), and dr  = h, we have this 
result 

d - 9 = - -  
9 

2yl +m+em.2+},  a (8) 

where g is gravity in the latitude +, and dg the increment in 
the same in passing vertically to a height h above the sea : a 
is the radius of the equator. Considerable labour was ex- 
pended in calculating the effect on the pendulum of the 
attraction of the hills on which each station is situated. 

Fig. 6 j. 
I 

Generally, as in Bouguer's formula, i t  has been considered 
sufficient to allow for the attraction of an indefinitely ex- 
tended plateau of uniform height h as though its surfaces were 
planes: but if we take into account the curvature of the 

2 2 
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earth's surface, this attraction should clearly be increased : 
t,he effect of the curvature may be thus obtained. OGS being 
a radius of the earth drawn through the station 8, and G H  a 
section of the sea level, SXK an arc of a concentric circle, so 
that K H =  SG = h, we require the attraction at  S of the 
solid generated by the revolution of SKGH round SG. Let 
SK = k, while SX measured along the circle is = x: if also 
X P  measured towards the centre of the earth = y, then the 
radius of the circle GH being c, the element of mass a t  P is 

where + means azimuth at  8. It is assumed that k is very 
small compared with c, and that h is small compared with k. 
The coordinates of P measured along SG, and perpendicular 
to it are 

xP "Y 
y + -  2 c and z - - .  c 

Hence the attraction at  S is 
jr 

( . - 2 ? ) ( y  tG) 
A = 2n jj d x d y ;  

09 .r)f (2+ y2 - , 
or putting 

we have 

which becomes simply nkh : c. But A' is the attraction of a 
cylinder whose length of axis is h and radius k. Hence 
inserting the density factor, the attraction a t  S is 

This formula, otherwise obtained, was first given by Pratt 
and is again carefully investigated in the Indian volume. At 



several of the stations the influence of the irregularities of the 
ground in the vicinity was also calculated : in one case only 
i t  amounts to one vibration per diem. 

We shall now endeavour to obtain a value of the ellipticity 
from the observations referred to in the last few pages. 

In attempting to solve the question by least squares, one is 
met a t  the outset with the difficulty that the errors of ob- 
servation are scarcely to be extricated from local irregularities 
of gravity ; although indeed, as far as our present knowledge 
goes, i t  would seem that the latter much exceed the former. 
This we gather from the circumstance that several stations 
have been visited by two, and some by three, different ob- 
servers ; and we see from the table, page 96 of Baily's Memoir, 
that these observers have agreed very fairly in their results at  
the stations in question. For instance, Sabine and Foster 
agree with almost precision at  Maranham, Ascension, and 
Trinidad, and Duperrey agrees with either of these observers 
at  Ascension ; Lutke and Foster agree a t  St. Helena. We 
shall not however in investigating the ellipticity use any one 
station more than once: with the  exception^ of Madras and 
St. Petersburg which, appearing in different series, it will be 
convenient to retain in both. We shall omit from Lutke's 
list St. Helena as having been visited by Foster: from the 
stations visited by Duperrey and Freycinet me shall omit 
Guam as visited also by Lutke, Rio Janeiro as visited by 
Captain Hall, and the Cape of Good Hope at3 visited Ly 
Foster ; aloo Ascension as visited both by Foster and Sabine. 

The results a t  Guam by Lutke are retained in preference to 
those of Freycinet at  the same place, for the reason that 
Freycinet's observations there were not considered by himself 
satisfactory. The stations of Ualan and Bonin, where the 
intensity of gravity seems abnormal, will be excluded from 
our investigation : so also we shall exclude three stations in 
the Indian list: Dehra, Mnssoorie, Mort?. 

The observations of Sabine, Foster, Ooldingham, Kater, 
Hall, and Brisbane, are gronped together in the first of the 
following tables: - 
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1. F o a m ,  S A B I ~ .  kc.  

, 

Coast shtionr. 

V~BBA- 
TIONE. 

86172.15 

86267 6s 

86264.56 

86168.98 

8616664 

86160.75 

86259.10 

86171 34 
86271.55 

86271.51 

86288.43 

86194.50 
86331.48 

86331.47 

86334.50 
86415.36 

86418.11 

86444 66 / 

LaT. 

0 I I, 

9 j a  joN 
8 a9 a8 

o ja 19 

o 14 41 

o I 4yS  
I a 7  o S  

2 31 39 

j 49 59 

7 55 35 
ra 59 a1 

15 56 7 
1155 aa 

jj 48 43 
jj 54 37 

34 54 a6 

54 46 a j 

5551 ao 
62 56 11 S 

 STATION^. 

... PortoBello F 

S i e m  Leone S 

Galapmgm ... H 

... St. Thomas S 

P. O a w  Lout G 

...... P m  F 

... firanham S F 

Feraando de N. F 

... Ascension S F 

...... Bahia 8 

St. Helena ... F 
RioJ aneiro... H 

... Paramatte B 
C.of Good Hope F 
Monte Video F 
Staten Island F 

... CapeHorn F 
South Shetland F 

STATIONB. 

Spitzbergen 8 
Greenland S 

Port Bowen F 

Hammerfest S 

Dmntheim S 

Unst ... K 
Portsoy ... K 
Leith Fort K 
Altona ... S 

Clifton ... K 

Arbury Hill K 
Loudor, ... S F  

Shrmklin ... K 
New Pork S 

St. Blas ... H 
Jamaica ... 8 

Madm ... G 

Trinidd ... S F 

0 8 I ,  

18 5 j 46 

18 j 17 

17 7 57 
16 56 21 

15 5 5a 

I 3 4 8 

I j 4 56 
I j 0 41 

12 51 37 

la  46 53 

10 59 q 
9 a9 39 

g a8 45 
8 17 I 

8 so a 1  

8 9 a8 

. . . . . .  Barnbay* 

...... DPmargIda 

Kodqpl  ...... 
...... Cocs&aC 

Nsmtha bad... ... 
. . . . . .  Madras* 

... Bangalore N. 
Bsngelore S. ... 
Mangalore* . . . . . .  
Aden* . . . . . . . . .  

... PachspPlirrm 

...... Alleppy* 

MaIlapntti ...... 
... Minicoy Id. 

... Kudankolam* 

Punnm* . . . . . .  

886005.18 

85996 03 

8599591 

85998 '5 

85990;' 
85959.10 

85987 oS 

85986 47 , 
85988 89 1 
85991-68 

85984.77 

8598$90 

85983.34 

8598701 

859819 
85982 88 1 

86119.19 

860a4.48 

86036.36 

86036.01 

86030.47 
8602689 

86019.87 

86029.33 
860~8.57 

86023.50 

86015.30 

8601,.87 

8601a.61 

8601a.73 

86005.13 

. 86000.69 

K e w .  . 
M o d  ...... 
Meean Meer ... 
Ism~ilia ...... 
Mumworie ... 
Dehra ...... 
Nojli ...... 
Kaliana . . . . . .  
Datsira ...... 
Uaka . . . . . .  
P-rh ... 
Ksliat~pur ... 
A h d p u r  ... 
Calcutta* ...... 
Badgaon ...... 
Sombnn . . . . .  

LAT. 

0 I I, 

7949 58N 

74 31 19 
73 13 39 

70 40 5 
63 25 54 

60 45 a8 

57 40 59 
55 58 41 

5 j 31 45 

53 17 43 

5a la 55 

51 31 13 

50 37 a4 

40 4s 43 
a 1  j a  rq 

17 56 7 
r j  4 9 
10 38 56N 

0 , 0 

51 a8 6 

33 15 39 

31 j r  37 

30 35 55 

30 27 41 

30 19 a9 

a9 53 a8 

29 30 55 

a8 qq 5 

a6 57 6 

a4 56 7 
14 7 11 

a3 36 a 1  

aa j a  55 

ao 44 a3 

19 5 o 

V~BBA- 
TION8. 

86483,qa 

86470.86 

86470.58 

86461.a8 

86438.78 

86435.40 
86414.70 

86418.0a 

86408.98 

86407.48 

86403.68 

8640000 

86396.40 

86358.10 

86188.80 

86a84.80 

86172.36 

86267.15 
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, Tornen ...... 
1 Nicolaistodt ... 
I St. Petersburg 

...... / Reval 

I t ::: 

-- 

T I 0 8 8 .  
.- 

86j9o 33 

86578 a5 
86568 68 

86567.41 

8656341 

86554.74 

8 6 4 0 6 ~  Pnris . . . . . .  
Toulon . . . . . .  

86315.41 

86179.35 
86315 97 Isle of Fnrnce 
8635 r .96 Port Jackson 

86414 64 Falkland Island 

...... Mowi* 
Rawakf ...... 
Isle of France 
Port Jackson 
Falklanll Inland 

* Sandwich Islands. t Near New Guinea 

- 

S l ' ~ T l 0 8 8 .  

Wilna ...... 
BBlin ...... 
Kremenetz ... 
Knmenetz ... 
Kiachinef ... 
Ismail . . . . . .  

ao 5a 7 

o 1 3 4 s  

ao g 56 

33 5 1 34 

p 35 18 

LAT. 

0 , I 

54 41 a 
52 a a2 

50 6 8 

48 4 39 

47 1 3 0  

45 20 34 

I 

* Off S.E. Coast of Japan. t Ladrone Inlands. f Caroline Islands. 

... Petersburg 

Sitka ...... 
Petropulowski 

... Greenwich 

Bonin Ialand* 
...... Guamf 
...... UdanS 

... Valpamh 

Dunkirk ... 
Clermont ... 
Bordeaux ... 

0 , "  

59 56 31 

57 a 58 

53 0 53 
51 a8 40 

0 8 U 

2 7  4 r a 
13 a6 zr 

5 a1 16 

3 a 30 

86273.08 

86161.44 

86149.83 

86240.18 

- -- 

0 I ,I 

51 a ro 

45 46 48 

44 50 a6 

Figesc . . . . . .  
... Fomentera 

86534.00 
86510.50 

86506.63 

O I U  

qq 36 45 

35 39 56 

I 
86575 91 1 
86485.w , 

1 
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The numbers in Table I agree with those of Baily, M. R.8 .8 ,  
vol. vii, pp. 96, 97, with the exception that the vibration 
numbers of Foster md Sabine are all (excluding those a t  
Port Bowen and Altona) increased by 0.14 in order that at  
Loudon the mean may be 86400. At four stations common 
to these two observers, viz. London, Ascension, Trinddad, 
Maranlram, the differences between the vibration numbers are 
(Foster-Sabine) $0.28, -0.30, +0-46, -0.45, and the 

Z 

meaa for the two observe1.s is taken in each case. 
The Indian observations are given in the second table and 

the Ruseian in the third : the last, taken from bl. R. A. S., vol. 
xliv, page 314, are converted into vibration numbers. The 
results of Duperrey aud Fre~cinet are coutained in the fourth 
table. These observers have four stations in common: if we 
take their results as given in Baily's Memoir, pp. 91, 92, and 
multiply Duperrey's vibration numbers by a factor of which 
the logarithm is 9-98 10785, me have the numbers given in the 
table. The mean of the resulta at  the four common stations 
is used in the subsequent calculation. The fifth table contains 
Lutke's results : the sixth those of Biot and Arago converted 
into vibration numbers ; Reclreil d'observatione gdod&8iques, 
h., par MM. Biot et Artago, 1821, page 573. 

The selection of Kew instead of London as a reference point 
or base lor the Indian series was unfortunate, greatly dimin- 
isl~ing the weight of those observations in the determination 
of the figure of the earth. For Kew is not in connection 
with any of the earlier pendulum stations. Great advantagye 
would have been gained had the Indian teriea been extended 
to include a t  least tmo stations of the Sabine and Foster 
series, and also St. Petersburg. We may, however, though 
the link is not so strong as might be desired, utilize the 
observations of Goldingham connecting London and Madras, 
and thus append the Indian series to the English series 1. 

Again, in order to counect the Indian series with the 
Russian, the Russian pendulums which had been used by 
M. Sawitsch were sent out to India and swung a t  a few 
stations, and finally at  Kew. Heaviside's result a t  this point 
being, according to Sawitach, 4401.7170, may be considered 

' An extension of the Indian Pendulum Series is under consideration. 



I as one of the series of Table 3. This however is an  'absolute ' 
result, and therefore not strictly one of SawitPch's series. It 
may be taken as a connection-but a somewhat weak one. 

We may check the two connections just explained in the 
I 

following manner. I n  the equation 
4 

( Madras ) ( Kew ) (St. Peteraburg) 
Greenwich = London - ---- 

London Madras Kew 

I taking London as 86400, take the first ratio on the right side 
from Goldingham, the second from the Indian series, the 
third from the Russian, the fourth from Lutke ; then we get 
for Greenwich a vibration number within a small fraction of a 
vibration the same as London. This is fairly sati~factory : 
unfortunately, however, notwithstanding the observations of 
Sabine, Poster, and Baily, the exact difference of Greenwiclr 
and London is not well determined, some of the results being 
positive, some negative: the amount is probably not more 
than half a vibration. 

If, e  being the earth's ellipt,icity, we put 7 = + m - e ,  and if 
no, n be the vibration numbers of an  invariable pendulum in 
latitudes 0, 9, we know that n2 = no2 (1 + q  sin2 +). The 
problem before us is to determine 7 and thence e .  Let 

'lo = -0052022 
be an approximate value of 7, and m being &,, put 

Y 
?I= 'lo +xo9 

1 Y e = - - ------ - 1 

290 10000 - 290+ 8 .4y '  
Let No be the approximate vibration number of a pendulum 

a t  the equator, No+z the true number, N the vibration 
number of the same a t  a station in latitude +, N+w the same 
vibration number corrected for local disturbance, then 

which is easily put in  the form 
No No2 sins @ 7, No2 BinB cp AoP - Nz 

x = z - + y  
N 20OOON + 2N + z ~ *  
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Here z is one or two units, and we shall put unity for its 
coefficient. Let further 

then to each station corresponds an equation of the form 

n ~ = z + a y + m ,  

z remaining the same in any one series of observations; but 
differing for different wries. We shall determine y and the 
2's so ss to make the sum of the squares of the x's be a mini- 
mum. Let 2Q 

= ( ~ ~ + a , y + q ) ~ + ( z ~ + a ; y  t q' )2+(z ,  +a,"y+mlM)' . - -  , 
+ (zZ + any + rnJ2 + (2, + a: y + + (2, +a," y + m,")' . . . , 

kc., tc. ,  t c .  ; 

dQ ' 

and from - = 0 eliminate the 2's by means of 
4Y 

end the result is the sum of the quantities 

1 
y3 = {(a:) - $ (%Y! Y + (a3 m3) - - (4 (ma), 

43 

tc. ,  &c., 

equated to zero ; an equation which gives a t  once y. Here i, 
is the number of stations in the nth series. The sum of the 
squares of the coefficients of the m's as they enter into the 
expression for y is the reciprocal of the coefficient of y in this 
final equation. 

We shall now give the results of this calculation. 
I n  the first instance, supposing all six series independent, 
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the equations (lo) become 

Y, = 78-7593g+ 8.8664, 
Y2 = 7.82953- 2.5995, 
Y = 2-31 383- 4.9886, 

Y, = 6.4696 3 + 14.3964, 
f, = 6-9186y+ 7.1597, 
y, = 0.4307y- 0.3743, 
0 = 102.7215y+ 16.4601 ; 

Secondly; assuming the connection of the EngIish and 
1 ndian series : 

Y,, ,= 105.4021 3-48.2878, 
Y, = 2.31383- 4.9886, 
y4 = 6.4696 ?/ + 14.3964, 
Y, = 6*9186y+ 7.1597, 
Y, = 0.43071- 0.3743, 
0 = 121.5348~-32.0946; 

Tl~irdly ; assuming the connection of the Indian and Rus- 
sian only : 
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Fourthly ; aseuming the connection of the English, Indian, 
and Russian : 

Y,,,, , = 137.76453-92.8100, 
Y, = 6.4696 y + 14.3964, 

Y, = 6 . 9 1 8 6 ~ +  7.1597, 
Y, = 0.43071- 0.3743, 
0 = 151.5834~- 71.6282 ; 

We may safely conclude that e lies between the limits 
indicated in the first and fourth solutions ; and comparing 
the second and third solutions with the ellipticity shown at 
page 319 i t  would appear that as far as can be ascertained 
from our data, the ellipticity resulting from pendulum ob- 
servations does not differ sensibly from that obtained from 
terrestrial measurements. 

To each of the above solut,ions there is a corresponding 
system of quantities x, indicating the apparent excess or 
defect of gravity at  each station of observation. If we take 
tlie system corresponding to the first solution and compare 
the x's of London and Kew, we find at  the former a defect of 
0.91 vibrations per diem and at  Kew an excess of +5.15, a 
difference of 6.06 vibrations, in fact between two points only 
ten miles apart and nearly in the same latitude. This seems 
inadmissible ; and we are compelled to fall back on Golding- 
ham's observat.ions a t  Mdraa  ss connecting the Indian series 
with London. The table on the opposite page shows the 
excess vibrations, or excess of gravity, a t  the different stations 
according to the second solution 

The points marked with an asterisk were not used in the 
calculation. 
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S T A T I O ~ ~ .  

Spitzbergen.. . 
... Greenland 

... Port Bowen 

Hsmmerfest 

Drontheim ... 
Unst ...... 

... Portsoy 

... LeithFort 

Altona . . . . . .  
. . . . . .  Clifton 

-4rburyHill. .. 
London ... 
Hhanklii ... 

... New York 

... St. Bl= 

... Jamaica 

... Trinidad 

Porto Be110 ... 

EXCESS 
VIBEA- 
TlONJ. 

+ 3.09 
-050 1 
+ 1.98 
- 1.41 

-3.55 

+1.75 
+ 1.67 

+1.13 

+ 
-0 09 

+ 0 83 

- 0.21 

- 0.36 

+ 0.20  

-3.70 
r1.31 
- 2.66 

+ 3.85 

Sr~noxa .  

. . . . . .  Kew 

...... Mod* 

Mean  Mew 

... Iemnilia 

Musmrie* ... 
... Dehra* 

...... Nojli 

Kaliane ... 
... Datnira 

U g h  . . . . . .  
... Pahnrgarh 

... K&anpm 

... Ahmadpur 

... Calcutta 

... Bad- 

... Somtana 

Bombay ... 

G d a p ~ p  ... 
St. Thomas ... 
P .G.Lou t .  .. 
pa; . . . . . .  

... Mlu~nhnm 

... Fernando 

... Aewnaion 

... Bahia... 
St. Helens ... 
Rio Jmei ru... 

P ~ r m a t b  ... 
C. Good Hope 

Monte Video 

Stnten IaLRnd 

C q  Horn ... 
S. S h o t h d  ... 

STATIOBB. 

Torn a,.. ... 
Nicolaistedt 

St. Petamburg 

R e d  . . . . . .  
. . . . . .  Dorpsrt 

JacobstRdt ... 
Wilna . . . . . .  

...... B6lin 

Kremenetr ... 
... Knmenetz 

Kischinef ... 
...... Ismail 

. . . . . .  Paris 

...... Toulon 

. . . . . .  Mowi 

... Raw uk... 

Isle of Frame 

Exc~ae  
VIBRA- 
TIONS. 

+ 1.89 

- 11.08 

- 3.97 
- I 08 

- 6.06 

- 9.30 
- 482 

- 4.09 
- 1.15 

- I .  

- 3.54 

- I. 54 

- 1.33 

+ 0.79 
- 1.92 

- 1.11 

+ 1.84 

EXCEB~ I 
VIBRA- 1 
TIONB. 

+ 3.31 

- 0.35 
+ 0.48 

+ 0.91 

+ 0.41 

- 1.36 

- 0-06 

- 0.74 , 
- 0.50 

I 

+ 0.81 

- 0.81 

- 3.07 
I 

I 
- 3.29 1 
- 1.83 

+ 480 1 
I - 1.61 / 

+ 7.16 

+a.43 
+ 6.86 

+4.53 
-1.50 

-3.45 

+ 6.15 
-0.98 

+9.3a 
- 1.41 

-0.44 
-0.80 

-1.43 
+ 2.90 
+ 1.67 

+ 3.90 

... Kodnngal 

... Cacnnada 

... Namtbabad 

M a d m  ... 
h11&0re N. 

Bangaloras. 

... Mmgnlore 

. . . . . .  Aden 

P a c h a w  
... Alleppy 
... Mallapatti 

Minecoy Id. 

' Kudnnkokm I 
Punnae ...... 

- a.46 

+ 0.30 

- 3.41 
- 1.28 

- 3.31 
-3.82 

- 1.12 

+ 1.81 

- 2 

+ 0.91 

- 1.65 

+ 3.49 

- 0.43 

- 0.53 

... Falkknd 

... Petemburg 

. . . . . .  Sitka 

P B ~ ~ O ~ ~ U ~ O W B .  

... Greenwich 

Bonin I a h d *  

...... Guam 

. .  Udan* 

... Val@ 

... Dunkirk 

... Clermont 

Bordesux ... 
Figeac... ... 
Formen bra... 

- 3.85 

- 0.13 

- 1.66 

+ 1.59 
-2.23 

+ 11.79 

+ 488 

+ 9.93 
- 1.41 

+ 1.96 
- 1.03 
- 1.10 

+ 1.29 
- I o l  1 
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The probable error of an equation-or the probable ir- 
regularity of grgvity-expressed in seconds per diem t 

and that of is f 0.18, so that 

These probable errors are however too small on account of 
the stations omitted from the calculation. 

During the progwa of the pendulum observations in India 
General Walker called attention-first in his Yearly Report, 
1866, and again in subsequent Reports up to 1874-to the 
broad fact which was gradually being brought to light, viz. 
that there is a very decided diminution of intensity of gravity 
as approach t made to the Himalayas, and that a t  coast 
stations, and e~pecially at  the Island of Minicoy, there is an 
excess of gravity. I n  the &port 1874, pp. 20, 21, we find 
notice of the crowning result of Captain Basevi's inveetiga- 
tions-that with which his life ao aadly terminated-that at  
the summit of the Himalayas there is a singularly great 
defect of gravity. 

These facts are visible in the figures contained in the lest 
table. 

. 
Kaliana was fixed on by Sir G. Everest as the nearest ap- 

proach that should be made to the base of the Himalayas for 
reliable geodetic observations, and in our table we see that a t  
that station and all north of it there is a large defect of 
gravity, attaining a t  M o d  an amount of - 22 vibrations. It 
is very remarkable that this is precisely the amount of t.he 
correction that had been applied for the attraction of the 
mountains, so that the apparent vertical attraction of the three 
miles of earth crust between Mort5 and the sea level is zero. 
And in fact at most of the other high stations the residual 

A n  A m n l  of the Mcaruremcnt of ttim 8 e d h  of ths Metidionat Arc 
of India, by Lieut.-Colonel Everent; pp. xli, xlii. At h o g  the o b e d  
azimuth ia affected to the extent of 20" by Himdaysn ettnrction. 
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discrepancy is diminished or removed if we omit the cor- 
rection for the attraction of the table-land lying between the 
station and the sea-level. 

It would seem then that these pendulum observations have 
established beyond question the fact--previously indicated by 
the astronomical observations of latitude in India-that there 
exists some unknown cause, or distribution of matter, which 
counteract the attraction of the visible mountain massas. If 
it be considered too bold a speculation to surmise that there 
may be vast cavities under great mountain masses, then the 
moet probable explanation ie to be mught in the hypothesis 
of Archdeacon P r a t h n d  this view of the matter is favoured 
by General Walker in his preface to the pendulum volume I .  

' Account ef tk Gr& !Mgonomd&l Sur~sy of India, rol. v, pp. nxii ,  
xxxiii. 

NOTES AND ADDITIONS. 

NOTE, page 36. 

The recently published second part of the MA. du Dkp. 
G&. de la Guerre contains an acconnt of the determination 
of the astronomical amplitude of the Algierian arc. The 
chain contains some 66 principal triangles, with detarmina- 
t,ions of latitude and azimuth at  the extreme stations-- 
Nemours, towards Morocco, Bone on the frontier of Tunis, 
and at  Alger (Algiers), near the centre of the chain. The 
three astronomical differences of longitude corresponding to 
Bone-Alger, Alger-Nemours, Bone-Nemours, were inde- 
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pendently dktermined by the elcktro-telegraphic met l ld ,  I 

with the results shown in the  following table :- I 

m. S. m. 8. 

Bone-Alger ... 7 18 51.212 18 51.392 
Alger-Nrmours g rg 35.119 19 34.949 
BonaNemours 8 38 16.498 38 a6 328 

The sum of the first two longitude intervals should be 
equal to the third: the actual discrepancy amounts to only 
On.0 13 which is exceedingly satisfactory. 

I n  1867, the theodolite displaced finally the repeating 
circle, and mith a theodolite, or azimuth circle' as they 
call it, of the very simplest constmction, the western portion 
of the Algierian chain was completed. The length of the 
arc of parallel, reduced to the latitude of 36", is stated to be 
as follows :- 

m. 
Bone-Alger ............ 425234.7 
Alger-Nemours ...... 441139.8 

These results being dependent on an assumed figure of the 
earth cannot however in their present shape be used in  an 
investigation of the  figure of the earth. I f  me take as 
resulting from the calculations a t  page 322, 295826.4 feet 
as the length of a degree of the parallel of 36", we get  the 
following contrast :- 

I STATION~. 1 A8TB. AMP. / G ~ o o n r c  A m .  I G -A  I 

These differences seem to p i n t  to a considerable attraction 
to the west a t  Algiers. 

The trigonometrical stations in the Algierian chain are, 
with a few exceptions, marked by well-built pillars of stone 
--generally conical frustm in form-having a vertical axial 
aperture communicating mith the centre-mark of the station. 
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The bases a t  Bone and' Oran (near Nemouk) are about 
10 kilometres in length ; the length of either of these bases, 
as calculated (through the intervening 88 triangles) from that 

I of the other, differs about 16 inches from the measured length. ~ The azimuth circle, or theodolite, .constructed by M. 
Brunner, of Paris, and used at  the stations of the grand 
quadrilateral, Mulhacen, Tetica, Filhaoussen, MJSabiha, has 
a diameter of 16 inchesJ and is read by four micrometers. 
The telescope is 24 inches in focal length and 2 inches in 
aperture. 

The electric light forming the signals at the stations just 
named was placed in the focus of a refledor 20 inches in 
diameter and 24 inches focal length. This reflector is a 
concavo-convex lens of glass, of which the convex surface 
is silvered, the radii of the surfaces are so related that spheri- 
cal aberration is destroyed and the reflector is practically 
paraboloidal. The emergent cone of white light has an am- 
plitude of 24: which is sufficient to cover any little errors 
in directing the axis of the lens on the distant station. This 
direction is of course effected by a telescope and special 
mechanism, insuring the greatest precision. 

I n  the longitude observations connect.ing Tetica and 
M'Sabiha, however, a refracting leus of eight inches diameter 
was found sufficient for throwing the electric light a distance 
of 140 miles. 

The revision of the French meridian chain of Delambre and 
Mechain was commenced in 1870, at  the base of Perpignan 
in the south of Fixnce, and has been completed as far as the 
base of Melun near Paris, an extent of 6" 30'. A few only 
of the old stations have been refound, thus the work is 
entirely new. M. Perrier has adopted the system of night 

I 
! observations, the light being a petroleum lamp in the focus 
I of a refracting lens of eight inches diameter and two feet 
I 

focal length. The old system of using church towers as 
trigonometrical stations has been abandoned, and in the 
woody and difficult country between Bourges and Melun 
the work was carried on by scaffoldings eighty and a hundred 
feet high. I n  this district the chain of triangles is double. 
The close of the triangles (or the error of the sum of the 
observed angles) indicates great precision in the work-the 
greatest error being lt'.20, and the average Ot'.53. 
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At the central and important station of Puy de Dame 
a local attraction of 7".0 in latitude has been detected. 

NOTE, page 59. 

With reference to (13), i t  should be remarked that i t  is 
necessary to leave the absolute terms symbolical, only if 
f, g, 8 . . . are liable to have any numerical values. Otherwise, 
for a single set of numerical values of those coefficient*, 
A, B, C . . . can be obtained by elimination from (1 2), and 
then, as appears from line 6, page 59, S is given by 

0 = S+ f A + g B +  h C +  ... 

NOTE, page 157. 

As Kater's value of the metre, viz. 3gin.37079, is still fre- 
quently adopted as the real length, the following remarks 
on the value given at  page 157, namely :- 

iBbtrc = 3gh.37043 + Oin.00002 

may be useful. Kater obtained his value from comparisons 
between a certain English scale and two metres brought from 
Paris. One of these, a platinum metre, is certified to have 
been compared by Arago with ' a  standard 911elre'-very 
slender authority; and about the authority for the second 
metre nothing is said. With respect to the comparisons, 
we have no information as to the errom of the thermometers 
used with the bars, they do not appear to have been inves- 
tigated ; nor is there any reference to any precaution taken 
for avoiding the bugbear ' constant error,' which is or should 
be the first and last anxiety of every observer. 

The length he obtained is not of course in inches of the 
present standard yard. The comparisons however made a t  
Southampton i n  1864 between the standard yard and this 
same platinum metre, lead to the result that the 'standard 
metre' to which Arago made reference had a length 

= 3gin.37046. 
The sufficiency and consistency of the authorities on which 

is based the value given at  page 157, are doubtless beyond 
. question. 
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NOTE, page 165. 

Suppose that each of the segments of a base line is m a -  
sured n times, and let t,he results of the several measurements 
of the first segment be 

a',, 8'", . . . ; the mean = o, . 
For the second segment let the measurements give 

do, a''*, 8"'2...; the mean = u2, 
and so on for each of the segments. Then, i being the 
number of segments, the adopted length of the base line is 

q + u 2 + o s +  ... mi. 

Put S2 to represent the sum (8'- o)a+(s"- u)2 + ..., and g 
for 0.674, then the probable error of o,, u2 ... are respectively 

and the probable error of the adopted length of the base 
S~+s22+s32+ ... Si2 + 

a(%--1)  j 9  
I f  each segment be only twice measured, and a,, a,, as .. . he 
the differences of the i pairs of measurements, S: = 
8,' = #a t ,  and so on : then the probable error of the adopted 
length of the base is 

e + (a,' + y + a: + . . . a,')+, - 
and the probable error of the measure of the unit of length 
(meaning thereby, one measuring rod, of which the first 
segment contains o,) is 

NOTE, page 199. 

I n  the annexed figure, P, Z being the pale of the heavens, 
and the zenith,p is the point in which the north end of the 
tl-ansit-axis meets the heavens, and a,e, f the great circle traced 
by t,he collimation centre. The small circle da is that traced 
by one of the threads in the first position of the instrument; 
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on reversal, the same thread traces out the  small circle c6 .  
I ~ c t  a, 6, c, B be the points in which the path of a star cuts 
thcsr circles so that  a Pd = I, PC = 1'. Then if the great  

Fig. 64. 

circle 211' mPet 11: e, f in e, and if t l ~ c  great circle joining c, (i 
niect 11, e, f i n  n, 

n P d =  i ( I - I ' )  = n P c ,  
~ P I L  = ( I +  I / ) ,  
e P k = 11. 

Now 8/1 = 6 :  if Zk= b ' , t n  b ' cosa=  tanb.  Then from 
tht? three consecutive right-angled triangles BPn,  71 Pe, e Pk 

tan Pk = t a n P t l c o s )  (I'-1)cou (If+ I )  see H, 

nud Z-'k = 90"- JI+ C'. This agrees with (1 7) when (z and 6 
arc smilll. 

.- 
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